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Abstract

Title of Thesis: Interactive Graphics and Dynamical Simulation
in a Distributed Processing Environment
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Department of Electrical Engineering

An implementation of a distributed dynamical simulation is presented. Issues
concerning real time simulation are discussed. Three dimensional, animated, object
oriented graphics software is presented with problems and solutions. Libipc(3), a
library for fast, easy interprocess communications, is designed, along with a general
discussion on client/server models. The equations of motion for an N body planar
chain are derived in a Lagrangian setting. The solution of these equations using
the Newmark technique is presented. Finally, a control system for reorienting the

chain is described, and its relation to the NASREM architecture is discussed.
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Chapter 1

Introduction

1.1 Background

In [10], Sinha envisioned a distributed simulation system comprised of at least four
different machines, or at least four different processes running on a smaller number

of machines. The logical tasks were identified as:

1. Graphical Output/User Interface
2. Dynamical Modeling
3. Control System

4. Planning System

With the completion of this work, we have realized three out of the above four
tasks — only the planning work needs to be done. In this implementation, the
control system was not separated into a process by itself. It is part of the dynamics
and control process. This work is spread over four areas: Interactive Graphics,

Interprocess Communication (IPC), Dynamics and Control.



1.2 Overview

Chapter 2 gives an overview of the research that was the foundation for the rest
that follows: the three dimensional graphics simulation of Space Station Freedom,
and its associated robotics.

In Chapter 3, we present the design of a library of functions being used in the
Intelligent Servosystems Lab by several researchers to connect dynamical simula-
tion programs on one workstation with graphical visualization software on another
workstation. The source code for libipc(3) is presented in Appendix A, and the Unix
manual pages are given in Appendix B.

In Chapter 4, we define the dynamical system under study: a planar chain of
rigid bodies under no external forces. We derive the equations of motion, and show
how we solve them. Since MACSYMA was used extensively in this development,
we give the MACSYMA source code that implements the solution for the general
N body case in Appendix C. Appendix D shows how the C language source code
was generated from the symbolic MACSYMA expressions, and shows an example
of the output from the MACSYMA subexpression optimizer.

In Chapter 5 we define a control problem and provide a solution for the chain.
The problem is to reorient the chain by actuating the arms to make closed path
motions in shape space. The NASREM robot control architecture, developed by
NASA and the NBS, is also discussed. In Appendix E, we give a hint for those
embarking on a distributed system implementation.

Finally, in Chapter 6, we give several recommendations for future work that

have arisen from the volatile nature of the graphics, networking, and Unix fields.



We have tried to include the definition of most acronyms when first mentioned,
as well as explain any nonstandard notation. In Chapter 3, we use the standard
Unix manual entry notation as in rsh(3C), meaning one can find a description of

the command in section 3C of the Unix reference manual.



Chapter 2

Interactive Graphics

2.1 Introduction

We begin our study of simulation with the area of graphics. We study the problem
of constructing a simulation of the space station and its associated robotics. We start
by implementing a three dimensional wire frame simulation, and then discuss the
problems one encounters when implementing even the simplest of shading models.
The Intelligent Servosystems Laboratory (ISL) at the University of Maryland
has three Silicon Graphics IRIS workstations. The oldest is a 2400 Turbo, and the
newest is a 4D/120GTXB. The fastest of the three, the 4D/120GTXB, is capable of
drawing 400,000 vectors per second, or 100,000 shaded polygons per second.
However, most of the graphics research described here was done before this new
workstation was procured. The older models were primarily wire frame graphics
engines, as a typical Gouroud-shaded scene takes more than two seconds to render.
The best graphics performance was attained through the use of display list, or

object oriented graphics.



2.2 Object Oriented Graphics

2.2.1 Definition

A graphics object is a list of graphical primitive operations with a name. One
defines a graphics object by compiling a set of drawing commands into a display
list. No drawing takes place until the list is invoked, by calling the object. Thus,

there are basically three operations that are done in object oriented graphics:
1. Objects are built out of display lists.
2. Objects that move in the scene are rebuilt every iteration.

3. All objects in the scene are called, following a hierarchy.

2.2.2 Discussion

Constructing hierarchical relationships among many graphics objects leads to very
efficient code. For example, for a robotic manipulator, each link is carried by the
previous link. We can define basic building blocks, such as joints and links, and
create specific instances of them by calling the generic ones for each link and joint.
The hierarchical relationship is defined by arranging for defining the first link to
call the first joint, which calls the second link, etcetera. In the case of an entirely
revolute arm, the link objects never need to be updated. To reposition the arm, one
need only redefine the joints that have changed since the last iteration, and call the
base joint. The display list does the rest, navigating the hierarchy, and calling all

of the dependent objects.



2.2.3 Problems

When one wants to display a shaded scene, however, things become more compli-
cated. When objects are shaded on the screen, they occlude each other. Maintaining
the proper relationships for this occlusion is tricky. The item that will appear ‘on
top’ to the viewer is the last item rendered. If the program only contains logic to
maintain a hierarchy so that the proper relative motions are handled, there will be
viewing angles that appear to show an object in the back of the scene in front of
objects closer to the viewer.

This leads to the need for a sorting algorithm. Many graphics workstations
today have hardware that will perform Z buffering. Simply put, this hardware
keeps track of the eye-Z coordinate (normal to the screen) of each polygon in the
scene, and renders them from back to front, using the Painter’s algorithm. The
drawback is that this leads to excessive computations, and can severely hurt the
performance of a real-time simulation.

Our hardware can do Z-buffering, but not while animating a scene in double
buffered mode (this eliminates flicker by drawing one image while the viewer looks
at a second image; the images are swapped without any clearing operation visible
to the viewer).

For our purposes, real time animation is the most important thing, and we
strive for as much realism as we can attain without sacrificing smooth animation.

This consideration led to the following scheme.



2.3 Object Sorting

Rather than implement Z-buffering in software, which is often done when one
doesn’t have the hardware for it and is willing to sacrifice performance, we decided
to make a compromise and just sort the objects in the scene. The number of items
to sort is on the order of tens or a hundred, rather than tens of thousands, as in
the case of polygon sorting.

Thus, we expected to have reasonable results even though the sorting was to

be done in software.

2.3.1 Discussion

The method is simple: a reference point is chosen for the object, such as the center
point of the bounding rectangular parallelopiped of the object, and the distance
to the viewpoint is computed. A list of these distances is maintained, along with
the object numbers they pertain to. At each iteration of the animation, the list is

computed, and then bubble sorted. The objects are then called in far to near order.

2.3.2 Example I: Obstacles on Space Station Freedom

This scheme worked very well in the case shown in Figure 2.1. The objects being
sorted are the three rectangular parallelopipeds that represent science experiments
on the truss of the space station, and the base of the Mobile Remote Manipulator
System, which navigates between the other objects. The objects are nonoverlapping,
and object sorting works very well in this case. (It should be noted that squared

distance can be used to determine rendering order.)



Figure 2.1: Space station over Africa with FIS/OMYV in the foreground

2.3.3 Example II: The NCAR World Map

For another example, consider the problem of displaying a map of the Earth, ro-
tating in real time below the space station, which is fixed in the scene. If one has a
single graphics object for the Earth map, the back side of the Earth will be visible
at all times. This is what we would like to avoid. If one had hardware Z-Buffering,
one could position black disks inside the Earth model, such that they occlude the
back side.

In our case, we needed to break the Earth model up into a suitable number of
pieces, and display only the ones that made up the local horizon in the low Earth
orbit scene. It turns out that from a low Earth orbit, one can only see about thirty

degrees around the Earth. So, we divided our Earth map into thirty six longitudinal



peels, and calculate the peel closest to the sub-satellite point. This peel and four
on either side are then displayed. In order to prevent the viewer from seeing the
poles through the surface of the Earth, we then split the peels into three pieces
each. The number of portions of the map to display should be a function of the

zoom factor of the view point, approaching half the map at infinity.

2.3.4 Preserving Object Hierarchy

Going back to the manipulator example, let us try to apply object sorting. To do
object sorting, we must be able to call any object, in any order. This is not directly
possible using the hierarchical nature of the arm objects. The lower links are called
by the upper links, and must be displayed after, even if they should appear farther
away in the scene.

We need a way to preserve the hierarchy of the objects while enabling the
Painter’s algorithm to be used to render the scene. We propose the following
solution. We set up the hierarchy based on invisible reference frames. The frame
transformations call each other down the arm, just as neighboring joints and links
did before. Only now, we allow each object to be the end point of its own hierarchy
of frames.

An example: suppose the shoulder of a three joint manipulator is moved. Using
plain hierarchy, the shoulder joint would be remade, it would call the upper arm
link, which would call the elbow joint, and so on, down to the link after the wrist.

Now consider what we need in place in order to maintain the same hierarchical

relationships between the objects, and tolerate any rendering order. Suppose we



need to render the arm from the wrist up to the shoulder. Then the wrist object
must be able to be called first, and must be located as a function of all three joints.
Likewise, the forearm must be able to be called and take into consideration both
angles before it. Proceeding in this way, we see that by having redundant frames
colocated but part of different hierarchies, we can accomplish our goal. Calling the
base of any hierarchy will propagate down to its end and call one object. This can
be done in any order. There is a price to pay in the number of invisible objects, but
all the duplicate frame objects have the same joint angles associated with them,
so the computational cost is small. For a three joint manipulator, we would be
maintaining six frames rather than three. In general we would need (N + 1)
object frames duplicating N different joint values.

This way, each object has an invisible hierarchy of frames above it, and the
objects can be called in any order. We can adopt the Painter’s algorithm for realistic

rendering, while preserving the hierarchical property of the display list.

2.4 The User Interface

Providing the user with a safe, convenient means of manipulating the large number
of inputs to a typical robotic simulation is a challenge. The keyboard has been
used less and less because it is prone to user mistakes, and it is tedious to provide
exhaustive error checking for it in software.

For our space station simulation, we used popup menus, which can be con-
veniently programmed using the Multiple exposure (Mex) window manager that

comes with the IRIS.
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24.1 Multiple Exposure (Mex) Popup Menus, and gl(2) sliders

Popup menus are convenient because they don’t take up any screen space when
they’re not wanted. When the user desires to interact, she clicks the mouse, and
then the menu appears, underneath the mouse cursor.

Rolling, or nested, menus can be used to provide a large number of options in
a relatively small area of the screen. Menu items can have labels that toggle each
time they are selected, or can have other menus appear.

But we found that menus alone could not provide a complete interface. In
the dynamical simulations described later in this work, we have as many as five
parameters associated with each body of the system. It would be much too te-
dious (and dangerous) to have on the order of twenty parameters entered via the
keyboard. We decided to use nested windows of sliders.

The sliders were implemented using the gl(2) library found on the IRIS, and
provided a high performance input tool. Since the slider bar reaches known limits
on either end, erroneous inputs are impossible. Also, since the window manager
was used, collections of sliders can be grouped in a small window, and several of
these windows can be placed overlapping on one corner of the screen. We found
it easy to manipulate as many as twenty sliders in a single simulation.

Since standard Graphical User Interfaces (GUIs) are almost agreed upon, we
didn’t want to invest much effort in this area, and found that sliders and popup
menus can work well enough together to provide a complete interface for input as

well as display.
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2.4.2 The NASA/AMES Panel Library

Shortly after the work was complete on our GUI, we were introduced to the
NASA/AMES Panel Library, written by David Tristram. We found more than
we had hoped for in this package. There are dozens of different actuators to chose
from, and all have the three dimensional beveled look that is part of the HP X
Windows implementation, Motif, and the OS/2’s Presentation Manager.

By far the most important thing about the library is that it almost totally isolates
one from the work involved with porting simulation code from the older line of
IRISs (2000s and 3000s) to the 4D machines. The library is available for nearly
every IRIS extant, and handles about 90% of the porting chore. Researchers wishing
access to this free software should send mail to dat@orville.nas.nasa.gov.

Figure 2.2 shows the versatility of the library. At the top right is a column of
buttons that perform miscellaneous actions. In particular, the first one replaces the
two windows below the button window with strip chart recoders. The windows
below the buttons contain slideroids. The middle window is a cycle of cycles of
slideroids.

A slideroid provides mouse control over a numeric display. There are buttons
for reseting the displayed value to an initial value, and for changing from coarse
to fine tuning mode. One can use the mouse to adjust the value being displayed,
or to adjust the rate at which it is changing. By pressing the left and right arrow
buttons on the inner cycle, one chooses slideroids controlling different parameters
associated with the same body of the simulation. The outer cycle selects the dif-

ferent bodies. In this example, using only a small portion of the screen, we have

12



Figure 2.2: Five body chain with the NASA/AMES GUI

mouse control over numeric readout of twenty-eight variables; three strip chart
recorders are available upon request, and seven buttons controlling miscellaneous

functions round out the interface.

2.5 Summary

We have discussed the pros and cons involved with object oriented graphics. A
solution to the rendering problem for manipulators was presented, in the context

of our simulation of the robotics in the vicinity of Space Station Freedom.
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We considered two approaches to answer the question: What GUI should one
use while waiting for standards to emerge? The GUI was perfect for our research
in the past years because we only used IRIS workstations. Now, however, we are
starting to work with HP graphics workstations, and must ask the GUI standards
question once more.

After considering attaching rigid body dynamics to our space station simulation,
we decided to use a more abstract visual output, in order to concentrate on planar
mechanics and control. At a later time, we can drive the three dimensional space
station robotics simulation with our two dimensional models, by constraining the
manipulators to move only in the plane.

We next consider how to connect the graphics portion of a simulation with the

dynamics via a network.
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Chapter 3

Interprocess Communication

3.1 Introduction

In this chapter, we discuss distributed computing. In the past, our simulation
systems were implemented on IRIS workstations. The software running on the
IRIS was responsible for solving equations of motion, and updating an animated
display of the simulated objects.

After analyzing the performance of the software, it was noted that the bottleneck
was in the numerical code!. We wanted a convenient way to split our problems in
at least two pieces: a simulation server, responsible for all numeric computations,
and a graphics client, responsible for the animated display. These two units would
be able to run on different machines if we had a way to connect the programs via
a network.

Sizing a simulation to more than one machine is not a trivial task. One would
like the graphics to be simple enough so that the graphics hardware can update
the screen at least 20 times per second, with 30 frames per second preferred. This

gives us about 33 milliseconds to render one frame of the simulation. This time is

IThis is especially true for the older 2000 and 3000 series machines.
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broken into two basic pieces, clearing a graphics frame buffer, and drawing the next
image. On the older IRIS models, the clear took as long as 12 milliseconds, while
the newer ones have whittled the specification down to a little over 2 milliseconds.
After subtracting the buffer clear time, we’re left with about 27 milliseconds to draw
the image. One must then consider two more specs: the number of vectors per
second, and the number of polygons per second that the graphics workstation can
draw. These figures will lead one to a count of how many polygons (for a shaded
image), or how many vectors (for wire frame) can be presented in the simulation.
Given that one has some idea of how complex a typical simulated scene is, one
must then choose to either do shaded or wire frame animation. The more recent
graphics workstations available for reasonable prices (say, under $50k), are now
capable of animating Gouroud-shaded scenes of the space station.

A similar calculation must be done on the numerical side. Given about 33
milliseconds per iteration on a given hardware platform, how complicated can the
dynamical model be? The programmer must decide whether or not to include
effects such as various types of friction, elastic mechanics, and how many degrees
of freedom are to be modeled.

The goal is for both sides to make best use of the simulation frame rate, but
often this is very difficult to do. We have examples of simulations that are graphics-
intensive, where scenes of the space station and the Earth-Moon system are dis-
played with very little shading, and the older IRIS’s struggle to render 5 frames
per second. On the other hand, we have dynamics-intensive simulations, where

the graphics are simple two dimensional images of chains of rigid bodies. The
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dynamics for the five body chain problem involve iterating several hundred lines
of tightly optimized C code, and non-rigid effects haven’t even been considered.
The result is a simulation that runs at about 20 frames per second.

In our implementation of the network connection, we were aided considerably
by what came to be known as the ‘IPC Bible’ in our lab. Without [6], our under-
standing of the complicated Unix™ system calls involved would be quite sketchy.

We will begin our IPC discussion with a description of the Client/Server paradigm.

3.2 The Client/Server Model

In the past few years, the Client/Server model has become increasingly important.
This is due in part to the increased use of the X Window System, and the Network
extensible Windowing System (NeWS).

A client is a program that requires assistance in order to complete its task.
A server is a program that makes itself available to other programs in order to
render some service. The windowing systems mentioned above include a window
managet, which is the server, performing the service of maintaining the windows
on a workstation screen. Client applications, such as a calculator program, or an
editor, request the server to draw information in the windows, and the server
informs the clients when the user manipulates the windows with a mouse. In this
way, an application running in a window can request its window to be redrawn if
it was recently exposed, etc. The real power of these systems is that the window
manager is run on one machine, and the clients it communicates with may reside

on any machine on the network. This has led to the recent introduction of a
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device known as the X terminal, which only runs the window manager locally.
All applications driving the windows are run on other machines, and use IPC to
communicate with the window manager.

Our system fits into this model as follows. We treat the graphics program
running on the IRIS as the client, which requests a service from another machine:
“Please compute the next state of the system.” The simulation server runs on a
Sun workstation, but since it only deals with numeric data, it could run on any
machine connected to the network.

A word on our interface to the network. Like most universities, the University
of Maryland is tied together by several Local Area Networks (LANSs) that are part
of a Wide Area Network (WAN), called the Internet. The Internet is basically a net-
work of LANs, connected together by gateway machines. All machines connected
to the Internet are required to understand two network protocols: the Internet Pro-
tocol (IP), and the Transmission Control Protocol (TCP). These protocols may be
implemented by a variety of operating systems, so the Internet is composed of a
diverse set of machines. The most common operating system used in the research
environment is some flavor of Unix. The Berkeley version of Unix provides a
rich set of Interprocess Communications facilities. These facilities are accessed by
means of operating system functions, or system calls. These system calls provide an
entry into the network protocol stack at the TCP level. The programmer doesn’t
need to know anything about how the TCP protocols are implemented using the
more general IP protocols, or how data is formated and transported across the

physical network using the Ethernet protocol.
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Still, just understanding the TCP facilities is an unpleasant task, and shouldn’t
need to be accomplished by everyone interested in doing distributed program-
ming. So we wanted to create a simple set of tools that C programmers could use
to easily connect software running on different machines. The tools we created are
sufficiently general that programs can be distributed over machines located any-
where on the Internet. We found that the network performance was good enough
to have a numerical server computing dynamics at the University of Maryland in
College Park and transmitting the data to a graphical animation client running on
a workstation at NASA /Goddard Space Flight Center (GSFC) in Greenbelt, several

miles away.

3.3 Libipc(3), a Library for Fast and Easy Interprocess Com-

munication

A library of routines has been created, called libipc(3). This library provides an
easy to use interface to the IPC facilities of Berkeley Unix. No knowledge of IPC
is needed in order to make use of the library. It acts as a layer on top of the

Ethernet/TCP/IP protocol stack (see Figure 3.1).

The user is responsible for implementing his own protocol to set up determin-
istic responses to commands from each side of the interface. The way data is rep-
resented is also up to the user, although a convenient means of sending structures

of data is provided. Data Representation will be discussed further in section 3.3.3.
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Figure 3.1: Relationship between libipc(3) and the standard protocols
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The source code for the library is shown in Appendix A. The Unix manual
pages, shown in Appendix B, give a description of the library, examples of its use,
and how to link with it. Examples are included for code written under the SunOS,
IRIS Unix, and IRIX operating systems.

In order to understand the discussions to follow, a brief introduction to the
notion of a socket is necessary. The Berkeley socket is a software abstraction for
a communications device. In Unix terms, it can be thought of as a bidirectional,
named pipe. The socket provides a mechanism for unrelated processes to commu-
nicate with each other on different machines, possibly running different operating
systems. Since file name conventions vary from system to system, they are not
a convenient means to identify services, or programs. Instead, one uses a port
number and a machine address to identify the party with which one would like to
communicate.

The analogy of the telephone system is helpful. When a process makes a system
call to create a socket, it is equivalent to one purchasing a phone. The phone cannot
be used until a number has been assigned to it. This is the point of naming the
socket, which involves assigning it a port number, and a local machine address.
Dialing a phone number is much the same as one process issuing a connection
request. The desired machine and port must be known at this time. When one
answers a ringing phone, it is very much like a process accepting a connection
request.

This procedure can be selective. One may hang up if one doesn’t want to speak

to the calling party. This can be done in software too. Upon accepting a connection
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request, a process can determine the address of the machine that made the request.
If this is not a machine with which communication is desirable, the connection can
be terminated.

Next, we will discuss the specifics of how port numbers and machine addresses

are assigned and used.

3.3.1 Connection Establishment

All machines attached to the Internet have an Internet address. This is a series of
four numbers in the range [0,255]. These addresses are uniquely matched with
names, which often have four components. For example, the Sun 3/260 used as a
simulation server in our lab has the Internet address 128.8.111.81, and the Internet
name orbit.src.umd.edu. A central authority is responsible for assigning these
addresses and names, in order to guarantee uniqueness. The central authority, the
Network Information Center (NIC), is located at SRI International [2].

Since the machine addresses are tightly controlled, programmers don’t have to
worry about them. The system manager of each machine must obtain an address
and a name by pursuing proper channels. This done, the programmer needs only
to find out the name and address of the machines she wishes to use.

The only other information necessary to request a connection is a port number.
Port numbers smaller than IPPORT_RESERVED are reserved for privileged processes.
Many of these ports have been assigned to ‘well-known’ services, and are consis-

tently defined on all Internet machines.
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The naive way to do things is to pick a port number larger than
IPPORT_RESERVED, and code the constant into both programs that wish to com-
municate. The server uses this humber to name its socket, and the client uses it
when issuing the connection request. There are several problems with this ap-
proach. First, only one image of the programs may be executing at a time. A more
general approach would allow several images of the programs on each machine
to be run concurrently, say to show a simulation at different time instants, or with
different parameter values. Another problem is that of uniqueness. How can one
be assured that no one else is using a given port number?

As shown in Appendix A, the source code for our library, the solution to these
problems is for the server to use the special port number 0 when naming its socket
(see function passive_socket(3)). This is a request to the operating system to use the
next available port. The port number chosen by the system is then determined
with a system call (getsockname(2)). The server must then make this port number
known to the client.

Our approach is specific to a two process system, with one server, and one client.
It also assumes that the rsh(1C) command? is supported on the server machine.
Given these two assumptions, the server informs the client of its port number
by starting the client via the rsh(IC) command, passing the port number and its
machine name on the command line. The client then has all the information it
needs to issue the connection request, which the server then accepts. This protocol

is implemented by the routines start_server(3), and connect_socket(3). The alert reader

2The remote shell command is used to execute one command on another machine.
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will be confused by the fact that the start_server(3) function performs the server side
of the connection, and the connect socket(3) function performs the client side. We
use opposite conventions for the role of client and server depending on the context.
In the context of IPC, the server is the process that makes the call to accept(2), while
the client calls connect(2). In the context of a simulation (which is the context used
by most users of the library), the server is the process providing numerical services
for a graphics client.

If rsh(1C) is not available, a different approach must be taken. At NASA/GSFC,
we have implemented an IPC system that connects a process on a VAX 8350 running
VMS to a process on an IRIS 4D running IRIX. The connection is established in a
more symmetric way than the method used in libipc(3). Either side of the TCP/IP
connection can be started first. The connect(2) call was put in a loop, so the client
may be started before the server.

A more general approach is necessary if more than one client needs to com-
municate with a server. The server must either use a well known port number
that all prospective clients are aware of, or it must register its port number in a
database. The database approach is preferred, since constant port numbers gener-
ated by users cannot be guaranteed to be unique. The yellow pages which is part

of the Network File System, provides this functionality.

3.3.2 Polled vs. Interrupt-driven Communication

The first implementation of the library was based on the polled 1/O approach.

Namely, once per simulation iteration, the program checks to see if there is data
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waiting to be read. If so, it reads the data and acts on it. The client would normally
draw the next image based on state data received, and the server would typically
process a command from the client.

While this is an intuitive approach, it wastes time. The time taken to check
for data availability and receive a negative response could be put to better use.
A better approach is to have the incoming data interrupt the recipient. This way,
when no data is waiting, a process continues to do it’s task, whether it is animating
a scene, or calculating state vectors. When communication is necessary, the process
finishes the current simulation loop, and then acts on the newly arrived data.

This is implemented using interrupt-driven socket 1/O. The problem is, this is
not available on all machines. For instance, it is available on Sun workstations and
IRIS 4Ds, but not IRIS 2000s, or 3000s. It is worth checking for the availability
of interrupt-driven socket I/0, since it can speed throughput by as much as a
factor of twenty [9]. One can check by looking in the file fcntl.h (located in
/usr/include/sys on Unix systems), for the definition of FASYNC. If it is present,
then interrupt-driven socket 1/0O is supported.

It should be noted that it is not always necessary to have interrupt-driven
socket I/O on both machines in order to improve performance. For example,
if the graphics client takes twenty milliseconds to execute one simulation loop,
and the simulation server takes thirty milliseconds using the polling approach, an
improvement will be seen if only the server is changed to use interrupt-driven

socket I/0.
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Libipc(3) provides both interfaces to the user. As described in the manual pages
in Appendix B, the only difference in the programming interface between the
polling approach and the interrupt-driven approach is a function call at start-up
(init_isr(3)), and a test of a flag (NewRequest) at the top of the main loop. The
performance improvement comes from replacing a system call to check for data
availability with a simple if (NewRequest) statement checking a global flag to see

if an interrupt has occurred during the last loop.

3.3.3 Data Representation

Multiprocess systems share data in a variety of ways. If running on the same CPU,
it is common for two process systems to communicate via shared memory. This
is also possible when multiple CPUs share the same bus. But when the processes
are on different machines separated by a network, this is not possible. The data
must be sent from one process to another. In this section, we discuss the various
approaches used to do this.

The most common approach is to send characters across the network. Data is
converted into an ASCII representation, packed into a message, and shipped across.
On the receiving side, the message must be decoded and the data converted into
machine representation. These conversion processes are quite time consuming.

Our goal was to avoid the translation to and from ASCIIL Fortunately, our
situation was helped by the fact the machines we are using store data in very
similar ways. In fact, the only difference in data representation on the IRIS 2000s,

3000s and the Sun 3/260 is that the Sun double type is known on the IRIS as a long
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float. Thus, without any conversion, we can send structures of various types of
data back and forth between two of these machines. This is not the case if a VAX
is involved. The VAX stores integers as well as floating point data differently from
most Unix workstations. For the integer differences, there are standard macros to
perform byte and word swapping between the local host’s representation and a
standard network representation®.

Until recently, no similar standard existed for floating point and more compli-
cated types. The Network File System, from Sun Microsystems, includes a library
to handle this problem. The eXternal Data Representation (XDR) functions provide
a means of encoding various different types of data into a network standard, and
decoding them on the receiving side into the local host’s specific formats. Since
the machines in the Intelligent Servosystems Laboratory (ISL) are so similar in the
way they store data, we decided not to use XDR in order to keep performance at
a maximum.

The Ilibipc(3) library includes two functions, send_structure(3) and re-
ceive_structure(3) that make the use of structures convenient for shipping data back
and forth over the network. However, a problem was encountered when doing
this with the IRIS 4D machine and the Sun 3/260. Even though each machine
represents the types float and short in exactly the same way, a structure on one
machine with several fields of each type was found to have a length different from
the same structure on the other machine. The IRIS 4D ensures that the fields of

a structure line up on boundaries determined by the largest type in the structure,

3htons(3N), htonl(3N), ntohs(3N), and ntohl(3N) where the % is for host, n for network, s for short
and [ for long.
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while the Sun doesn’t. For example, a structure with fourteen long float fields
(of eight bytes each) and one int type (of four bytes) is 116 bytes long when used
on the Sun, but is 120 bytes long when used on the IRIS 4D. The IRIS pads the int
field with four bytes so that all fields start on eight byte boundaries. So when pass-
ing raw data from machine to machine, several experiments must be conducted
first, to ensure that the format is identical for each desired type, and also that the
format of the structure is the same on both machines.

For the IPC system implemented at NASA /GSFC, we used a message passing
approach. The data is converted into ASCII, and terminated by a newline character.
After the sending process sends the message over the network, the receiving process
will detect that data is available. The problem is that the receiver may not know
in advance how long the message is, and thus doesn’t know how many bytes to
expect over the network. One wants to avoid the receiver trying to read a whole
message before it has arrived in full, because the message would then have to be
buffered and pieced together. Fortunately, there is a mechanism for PEEKing at the
data available from the socket, without actually reading it. We used this mechanism
to search the newly arrived data for the newline character, in PEEK mode. If it is
present, we know that an entire message is ready to be read, so this is done. If
not, we return control to the calling routine, passing back status that there are no
full messages to read.

It is up to the programmer to decide what method to use, taking into consider-
ation performance requirements and the types of machines involved. The sockets

created by the routines in libipc(3) can be used with the read(2V) and write(2V) func-
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tions to implement a message passing system, or, when appropriate, the structure-

passing routines can be used to send data directly.

3.4 Summary

We have discussed general animation considerations in designing a two process
simulation system, with a graphics client, and a simulation server. After intro-
ducing the Client/Server model, and a few words on the Internet, we presented
libipc(3). This library was called fast. Using raw data transmission and interrupt-
driven socket I/O, we have measured communications throughput as fast as 14
kilobytes per second [9]. The library was also called easy. One can see from the
examples given in Appendix B that only one or two simple function calls are nec-
essary to initiate communications, and one or two more in each loop to transport
the data.

We discussed ways of establishing the connection, and different ways of han-
dling I/O — the polled approach, and the interrupt-driven approach. We con-
cluded with a discussion on the various ways of represending data, and their
impact on performance and portability.

Several different programmers have made use of libipc(3) in the ISL, and have
been able to construct distributed applications without any knowledge of the details
of IPC. In view of this fact, our main IPC research goal has been achieved.

In Appendix E, we present a suggestion that may be helpful to programmers

implementing distributed applications.
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Chapter 4

Coupled Planar Rigid Body Dynamics

4.1 Introduction

In this chapter we define the equations of motion and an approach for solving them
that makes use of numerical methods and symbolic computation. The equations are
derived using the Lagrangian approach, which provides several physical quantities
(energy, momentum, equations of motion) that can be checked to ensure that the
solution is stable. We will describe how the Newmark method was applied to
our problem, producing a linearized system that we solve using Newton-Raphson

iteration.

4.2 Lagrangian Formulation of the Equations of Motion

The system under consideration is an arbitrary number of planar rigid bodies
connected in the form of an open chain, with the center of mass of each interior
body on the line connecting its two joints. We begin by describing the system as

in [12], for the case of a chain.
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Figure 4.1: Definition of parameters for the three body problem

4.2.1 Notation

Define the origin of the inertial coordinate system to be fixed at the system center
of mass with its Z axis normal to the plane of the paper. Similarly, for each body,
define a local frame of reference located at the body’s center of mass, with its Z

axis out of the paper. Refer to Figure 4.1.
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The following notation will be used:

0; — Angle from the inertial frame of reference to local frame
6;; — Angle from local frame i to local frame j
R(6;) — (2 x 2) rotation matrix associated with body
cos(d;) —sin(6;)
R(0;) =
sin(6;)  cos(6;)

We will also make use of the following:
@&; — Vector from joint (i — 1) to the center of mass of body ¢ in the local

frame of body ¢
B; — Vector from joint (i — 1) to joint 7 in the local frame of body ¢

k; —— Linear parameter € [0,1] locating the center of mass of body ¢ on

the line segment from joint (i — 1) to joint ¢

7; — Vector from the system center of mass to the center of mass of
body @
I, — Moment of inertia of body ¢ at its center of mass and along an axis

normal to the plane of the paper
m; — Mass of body ¢

The fractional masses are defined as:

m;

Ei= N —
Ej:l m;

The joint angles in terms of absolute body attitude are defined as:

0i; = 0; = 6;
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We define the mass distribution constants a;r and b;x, which are used to write
the mass matrix of the system.

The mass distribution constants «a; ;. are:

{

N
- Y &, k<i<N-1

j=i+1

Ak =

’

N
1- > ¢, 1<i<k-1

\ j=t+1

The mass distribution constants b; 5, are:

0, i=1
N
bi,k= ——Z&‘j, Z#k,ZSZSN
j=i+l
N
1-Y ¢, i=k#1
=i+l

The link lengths are:
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The center of mass locations are:

1
a-{=< dN[:l, i=N

The kinematics descriptor is:
bi k= ai 1 + bi &
The augmented inertia is:

N
L= L+ myl[8 5]

s=1

The mass matrix product terms are:
~ N e ~
/\j,l = Z mkéj,k . 51’]‘: COS(on)
k=1

We note that we can gather all of the mass property information into a coefficient
that we call A;;. This will prove very useful in keeping the symbolic equations at

a manageable size. So we write:

~

)‘j,l = hj,l cos(d ',1)
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The mass matrix can now be expressed in terms of the parameters defined so

far:
" 71 ’:\1,2 XLNH
M2 b Rn
M=
DV\LN 7\2,1\] TN _

As an example of how the mass matrix depends on the mass properties and
the joint angles of the chain, we display below the mass matrix M and the mass
coefficients h; ; for the N =3 case.

The mass matrix is:

h1,1 hiz cos(g —q1) hi13 cos(gz — q1)
M= | h12 cos(g2 — q1) ha2 hy3 cos(@ — @)
h1s cos(gs — q1) ha3 cos(g ~ @) h33

The mass coefficients (h; ;) are:

hi1 = d% (1—¢ey— 53)2 m3 + d% my (1 — ey — 53)2 — d% mi (&g + 83)2 + 17

hag=dy (d2 (1 —€3) —daeakp) (1 — g2 — €3) m3

+dymy (2 +€3) (dpes+dpeaky) +dimy (1 —eg —e€3) (dp (1 —e2) ko — dp €3)

haop =(dy (1 —¢€3) —dh e Ka) m3 — my (dg €3 + d €3 Kp)?

+my (dy (1—e2) mp —dpe3)?+ I
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ha1=dids (1 —e3) (1 —ex—e3) mg—dimads (1 —e3 —€3) €3

+dymyds (g2 + €3) €3

hap = d3 (d (1 — €3) — da ez K2) (1 —€3) m3

+mydzes (daez+ dyea k) —mpdzes (dy (1 —€2) Ky — do €3)

h3,3=d§ (1 -83)2 m3+I3+m2d§£§+m1d%6§

As derived in [12], the forward kinematics of the chain are!:

x; N _
= = R(O[)(su 4.2.1)
Yi =1

Again, as an example of how the kinematics depend on the joint angles and

mass properties, we show the detailed form for the case of N =3:

21 = —d3e3 COSq3 — (da ez + dp &3 Kp) cOs gy — dy (€3 + €3) COS ¢

Y1 = —d3ez sings — (dre3 + da €2 Kp) singy — dy (3 + €2) singy

)= —dgez cosqgz+(dy (1 —¢e3) ky —dpesz) cosq +dy (1 —ep —€3) cosqy
w=—dzezsingg+(dy (1 —¢€2) kp —dae3) singp+dy (1 —¢e3 —€3) sing
z3=d3 (1 —¢3) cosq + (dy (1 —e3) — dpea kz) COS @ + d (1 — &3 — €3) CcOs 1

y3=d3 (1 —e3) singz +(d2 (1 — €3) — dr 2 k2) singy + di (1 — 2 — €3) singy

'Note that the subscripts on § are reversed from those in [12] throughout this work.
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In order to study the effects of torsional springs in our system, we define a

stiffness matrix S, where s; is the spring constant of the spring at joint ::

[ 81 — 81 0 ... 017
—81 Ss1+ %2 —$2 ... 0
S=1] 0 -8 s$+s3 ... 0
L 0 0 0 eo. SN
The stiffness matrix for the N = 3 case is:
S1 —381 0
S=1}-35 s1+8 —$
0 -8 82

As we will derive in the following section, the vector equation of motion for

the system is given by:

1
Mg +Sq+ {(Vmi; - i34 - V@MY = T (4.22)

4.2.2 Equations of Motion Derivation

We now derive the equation of motion previewed in the last section (adapted from
[13]). To write the Lagrange equation for our system, we begin by defining the
kinetic energy:

1
T=54"M@4q

The potential energy associated with the torsional springs at each joint is defined
as:

_1 7
V—quq
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The Lagrangian functionis L=T - V.
Now, the Lagrangian equation of motion is

dor or
736 g Q, (4.2.3)

where Q is the generalized force vector acting on the system and q is the vector
of generalized coordinates. In our case, q is the vector of inertial body reference
angles 6;, and Q is the vector whose components represent the net torque acting
at the center of mass of the corresponding body. This is due to motor torques at

the neighboring joints, and spring torques as well. So we write:

Q=0Q,+Q;

We note that the spring torque term Q, is the gradient of the potential energy

Q,=-Sq=-VV

Noting that T' depends on both q and ¢, and V depends only on q, we have:

dorT _ doL
dtoq — dtdq
oL or ov 0T

oq ~ 09 099 0q
so that equation 4.2.3 becomes:

d oT or

@woq ~ 9q - Q; + Qn
d oT oT

'Ji'a—q - (a—q"'Qs) Qm
d oL oL

g 8 2n
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We call the motor-induced torques on the bodies 7, rather than Q,, from here

on. Computing the derivatives indicated above:

oL

— =M(q) 4

q 99
OL 1 .1er, +.

%(M(q) Q=M@+ {(Vmi; - is}q

Combining the last four equations yields 4.2.2.

We have the following scalar equations for the N = 3 case?:
— (k12 63 sin (g3 — ) — b1 3 3 c0s (g3 — g1) + h1 2.3 sin (g2 — )

—h12Gcos(p —qi)+s1@ — G hi1—qis1) =7

- (hz,s @ sin(gs — ) — ho3 3 cos (@ — ) — @ 12 sin(g — 1)

—Grhipcos(p—~q)+s2@a—pha—@ao—sip+qas)=n

@ hy3 sin(gz — q2) + G2 hp3 cos (g3 — @) + I h13 sin(g3 — q1)

+Gqrhigcos(a —q)+@haz+sop—qpsr=m

4.3 Solution of the Equations

Next, we turn to the task of solving the equations just derived. In [7], the Newmark
trapezoidal method is described. We will apply this method to our problem as

follows.

?Note that the three generalized forces on the right hand side are linear combinations of two motor
torques.
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Consider a set of N second order nonlinear differential equations, containing

3N unknowns®:

i
o

fl(Qh---,QNZQ1,-.-,QN}5117---,61N)

Il
=]

Intar, o v duy ey NG Gy e, GND

4.3.4)

The objective is to find the solution {¢(t,+1), ¢(tn+1), G(tn41)} given the previous

solution {¢(t,.),4(t,), §(t,.)}. We use a special case of the Newmark trapezoidal rule.

Assume that between time steps ¢, and t,,;, the acceleration is constant, and

equal to the average of the values at the end points of the interval:
. 1. .
GO = 5 + Gus1),t € [tn, tnaa]
Definite integration over the interval yields:
. o b
Gn+1 = Gn + E(q" + Gns1),where h = t,41 — 1,

Definite integration twice of 4.3.5 over the interval gives:

2
tn+1 —

2, . .
Qn+1 = Gn + L (Qn + (In+1) + hQn
4

Assuming h < t,, we can write tZE a1 t% ~ (t,41 — t,)%. This gives us:

R, . .
Gn+1 = Gn + Z(Qn + Gn+1) + hipn,

(4.3.5)

3Depending on the context, we will use various notations for the variables. The subscripts n and
n+1 indicate samples of the vector at times ¢, and t,.,1, while the subscripts 1,2, ...,1,..., N indicate

a particular component. Occasionally, we will use both.
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To keep the length of the expressions at a minimum, we define the following

variables:

. h.
Ain = Gnt E%,n
h2
bi,n Gin t h%,n + ‘Z’Qz,n

The Newmark substitutions are then defined as follows*:

G = -2~f'1'z‘ +a;n
hZ
G = Th+ b; n

We use the Newmark substitutions to eliminate q,+1 and §,+1 from 4.3.4 eval-

uated at time t,,.1.

This leads to a new set of N nonlinear equations in §n+1:

i
(o]

gl(q'la"'aq'N)

(4.3.6)

!
o

gN(61,"'7q'N)

We solve these equations using Newton-Raphson iteration. Le., we linearize

the equations about y,, and arrive at the equation:
] Aqn+1 = -8
Aqp+1 is the change in the approximation to q,+1 over one iteration:

P _ i+l s
Adn+1 = Gna1 — i

i ne1, Gins1, and §; n.1 are written g¢;, ¢;, and §: for brevity.
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4,1 is the i approximation of § at time step n + 1, and J is the Jacobian of the
system 4.3.6. We evaluate J and g at §,;. This gives us a linear equation to
solve, which we do using LU decomposition, followed by forward and backward
substitution [8].

We start the iteration by setting q}L +1 = 4, and continue until Aq,,1 is small
enough. We then set §,.1 = §M;, where M is the number of iterations necessary
for the Newton-Raphson technique to converge.

Continuing our example using the three body case, after doing the Newmark
substitutions, the dynamics are:

2

1 .. .. . .. . b
(Z hia@ b +higaz, dah+hia a%,n> sin ((fh - B - b3+ bl,n>

. N N
+ h13 {3 cos ((ql - @) T b3+ b1,n)
1 212 . 9 . .. L2
+11 h12G h™+ hig ag o h+ h1paz,, ) sin | (G1 — @) T b+ b1

.. N N
+ h1,2 G2 COS ((ql - CIZ) _4— - bZ,n + bl,n)

2
+ (G151 - s1G2) 7 S by +drhi1+bins1 =1

1, . . . h?
(Z has B h* +hagaz, s h+hog a%,n> sin ((qz - @) 7 bt bZ,n)

. .. h?
+ h23 {3 cos ((, @ — @) T b3 + bz,n)

1, 2 . ) o, . h? ‘
2 Fh1ah? — ayngihioh - a1, b2 ) sin | (G1 — @) T by + b1y

) . . h? . . h?
+ G1 hy2 cos ((QI - G2) T by + bl,n) — (5243 — G252 — 51 G2 + Gg $1) T

- St +hns+s1b, — iaS1=m
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1. . . . R
<_Z 2 hosh? — agp i hyzh — a’%,n hz,a) sin ((qz — {@3) T b3 + bz,n>
h2
+ G2 hp 3 cos ((51'2 - {3) v b3 + b2,n>
1. ’ . 2 . . h?
{1 G h3h? = a1ndrhagh— a3, hig)sin{ (G — @) T b3+ b1

. .. h?
+ ¢1 h13 cos ((q1 - {3) T b3 + b1,n>

.. .. X
+ (5243 — G2 %2) T tB haz+s2b3, — by S0 = 73

4.4 Implementation

As mentioned in the introduction, MACSYMA was very useful in implementing
the solution of the equations of motion for the chain. Equation 4.2.2 was coded in
terms of N using customized versions of the DOT and GRAD operations for vectors;
matrix multiplication, and the SUM() function.

As will be described more fully in the next chapter, the desired output from
MACSYMA was a C language module (a collection of functions) responsible for
the dynamics, inverse dynamics and forward kinematics of the chain for a specific
value of N. Appendix C contains the MACSYMA source code that achieves this
goal.

One of the first things done in the MACSYMA code is setting the value of N.
The simulation running in our laboratory uses the output for the N = 5 case. Next,
the definitions of a; 4, b; x, ﬁi,&i,@,k,fk,and h;, are formed. The mass matrix M is

then formed based on these definitions. Next, Equation 4.2.2 is defined.
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The Newmark substitutions are then performed, and the system is manipulated
into the form of Equation 4.3.6. The Jacobian of this system is then found, which
completes the dynamical manipulations. The forward kinematics are implemented
using Equation 4.2.1.

Until recently, MACSYMA was no help in translating symbolic equations into
computer languages other than FORTRAN. A new function, GENTRAN() is now
available that can be used to generate FORTRAN, RATFOR, and C language output.

Given a matrix jac, the MACSYMA fragment:

GENTRANLANG : C §

gentran(jac : eval(jac)) ;

produces syntactically correct C language statements assigning every element of
jac.

Another thing that used to be lacking in MACSYMA's treatment of language
translation involved repetition of common subexpressions. Simple things like
sin(x)®> were repeated over and over in a long trigonometric expression. For
years programmers had to declare temporary variables, assign them, and insert
them where the common subexpressions appeared. MACSYMA now does all of
this, through the use of the OPTIMIZE() function directly, or indirectly by setting
GENTRANOPT : TRUE.

To make things more convenient for the programmer, there is also a
GENTRANIN() function, that will read a composite file containing both MACSYMA

statements (generally GENTRAN() commands) and static C language statements, and

SA patch was received from Symbolics to make all C language output appear in lower case.
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produce a file by leaving the C language statements intact, and replacing the MAC-
SYMA code fragments with their output. Thus, a compilable file can easily be
generated without human intervention.

The first part of Appendix D shows a portion of the composite file JAC.MAC_C
for the three body chain problem. Sections delimited with << and >> are processed
by MACSYMA, and replaced by their output. The other sections are passed to the
output without change. The second part of Appendix D shows the corresponding
output generated by sending this file through the GENTRANIN function.

If one needs output in a language other than FORTRAN, RATFOR, or C, one
can use the LITERAL() function in conjunction with GENTRAN, and produce any
syntax desired. The symbolic expressions that result from manipulations within
MACSYMA can be picked apart using the PART() function, and surrounded with
the syntax of the desired language. At NASA/Goddard Space Flight Center, this
method is being used to generate Ada code for forward kinematics and manipulator
Jacobians.

There is one more new feature in MACSYMA that will enable it to compete
favorably with Mathematica in the near future: TgX output. All of the three body
example equations given earlier in this chapter are slightly edited TEX output gen-
erated by MACSYMA. Many researchers have made the switch from MACSYMA
to Mathematica simply because they wanted C and TgX language output. Now
that MACSYMA has these features, it is not necessary for people in the scientific

computing community to switch for these reasons.
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4.5 Summary

We have discussed both symbolic and numerical issues involved with writing and
solving the equations of motion for a chain of N rigid bodies connected by revolute
joints free to move about in the plain, without any applied external force or torque.
The symbolic issues included writing the equations using definitions from [12], and
using the Lagrangian approach. We also discussed how MACSYMA can be used
to do all of the symbolic manipulations and translate the results into optimized C
code.

The numerical issues concerned the solution of the equations. We discussed
how the Newmark method was applied to our problem, linearizing it in an iterative
process of finding the solution at the current time instant, given the solution at the
previous instant. In the next chapter, we will see how the C module discussed here

fits into the simulated control system.
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Chapter 5

Attitude Control for a Floating Chain

5.1 Introduction

In this chapter, we discuss the design of the control system for a robot whose
equations of motion were derived in the last chapter. The fact that the base of the
robot is not fixed with respect to the inertial reference frame (as with terrestrial
robots) is important here. We will be careful to note when quantities are in joint
space or configuration space.

The problem we solve is as follows. With the system initially at rest, we desire
to rotate the entire chain, to attain a prescribed new attitude. Most spacecraft
do this using reaction wheels and/or torquer bars. We will show that a floating
robot (such as the Flight Telerobotic Servicer (FTS,[11]), to be flight-tested in 1993)
doesn’t need one — its manipulators can be used instead. As we will detail in the
next section, by moving the joints of the manipulators along some closed path, an
attitude change can be accomplished.

In the sections that follow, we will discuss the design of the system. We will

see that our architecture is similar to that described in [1].
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5.2 Attitude Change via Shape Space Loops

In [5], a formula is given for the phase shift of the central body in a chain, given the
loop traversed in the joint angle (or shape) space. Using our notation, the formula
is:

Ab, =_/ S_'__M, (5.2.1)
r e-Me

where
A4, is the change in attitude of body 1 (the center body),
d¢ = (d¢y,...,d¢,—1) is the vector of joint differentials,
M is the n X n mass matrix,
e=[11---11%,
I is the loop traversed in joint space, and
L is the n x (n — 1) matrix defined by
1 i>j

lLij =
0 otherwise

To get an idea how this works, consider the following example. Suppose a
person is seated in a swivel chair. Holding a weight (say, a briefcase) with her arm
outstretched, she swings her arm from her side to her front. She then draws the
weight in to her body, and swings her arm back to the side, and finally she extends
her arm again.

The two joints used in this motion have completed a shape space loop, and the
person has rotated in the chair. Why? Because the total angular momentum of the

system is conserved. Thus, when her arm swings one way, the chair rotates the
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Figure 5.1: Chain terminology

other. Since the inertia of the system during the first swinging motion was larger
than during the second one, the chair rotated more to compensate during the first
motion. Thus, a net rotation of the system was achieved.

Some might argue that this only happens due to the friction in the example,
but we will see later that it works in a frictionless system as well.

For our simulation, we took n = 5, which can be thought of a planar robot with
a body, and two arms of two links each (see Figure 5.1). We command each arm so
that it traverses a path similar to that in the above example. Our top level control
problem, then, is to command the motor torques on the four joints of the chain to

achieve a specified system rotation of A#,.
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Figure 5.2: Context diagram

5.3 Simulation Server Description

The Simulation Server is the process running on a machine with good floating
point performance. This process is responsible for all calculations concerning the
system, and must respond to user requests received over the network. A request
might be to change a certain parameter, such as the mass of a given body, and
restart the simulation. The context diagram for the simulation server is given in

Figure 5.2.

The server is broken into two pieces: the controller and the simulator. The Data

Flow Diagram (DFD) is shown in Figure 5.3.

The controller handles the interface to the low level (servo) controller, and
makes use of the trajectory generator and the inverse dynamics. The DFD for

these interfaces is shown in Figure 5.4.

The simulator handles command processing, and the interfaces to the planner,
the forward kinematics, and the dynamics. The DFD for these interfaces is shown

in Figure 5.5.

In the sections that follow, we go into more detail in describing the various

pieces of the simulation.
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5.3.1 Dynamical Model

The Dynamical Model is used for two purposes. One is to find out what happens
to the system when a certain torque is applied. Given the torque, the dynamical
model gives us state information (body angles, rates and accelerations) for the next
cycle of the simulation. In addition, looking at the equations of motion in another
way, given the desired state of the system, the dynamical model gives us the torque

that should be applied.

Dynamics

The dynamics routine is used for the case of prescribing a set of torques (generalized
forces) on the system, and finding out how the system reacts. The equations of

motion derived in the last chapter are solved using the Newmark technique to find
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the accelerations on each body. The accelerations are then integrated to give the

rates and angular positions.

Inverse Dynamics

Upon inspection of the equations of motion for the three body case shown in the
last chapter, we note that the angular positions of the bodies always appear in
differences. Thus, we can use joint angles!.

This is not the case for the rates and accelerations, however. These quantities
must be expressed in configuration space. This is not convenient, since the desired
behavior of the system is most naturally thought of in terms of the joint space. This
is because the base of the manipulator is not fixed, so when one body moves, others
react, making it difficult to specify the desired motions and rates in configuration
space.

This difficulty is resolved by converting desired joint space information into
configuration space for use by the inverse dynamics routine. This is explained

further in the next section.

For example, g3 — ¢1 = ¢1 + ¢2, where the ¢; are absolute body angles, and the ¢, are joint angles.
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5.3.2 Controller

The controller implements the partitioned control law described in [3]. Rewriting
the equation of motion (4.2.2) to emphasize the dependence on ¢, q, and §, we

have:

M (@) § +Syp + Vi, q) =T

where S; is an N x (N — 1) matrix that satisfies S q = Sy¢.

We choose the input 7T to the system based on the partitioned control law:

T=aT' +p
where o and 3 are chosen as:
a = M(@©@)
B = V(¢a q) + S¢¢

Substituting the above definitions into the partitioned control law, we see that with

this choice of the model-based parameters a and 3, the equation becomes:
T =4
so that the system appears to be a unit mass from the 7’ input. For the servo

portion of the partitioned control law, we set:

*»SE€rvo

Gy = Gyt Kby — P+ Ky, —P)+ K; /(¢d —@)dt

where the subscript d indicates desired, and ¢ is the vector of joint angles.
We need to convert éﬁ.;ewo, which is the desired joint acceleration augmented

by the servo error, into configuration space, so that it can be used by the inverse
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dynamics. Leaving the details of this transformation to the next section, we write
it as:

**SE€rvo

T, = fa(qbd’ q5d7 ¢d )

@, (the desired joint velocity) must also be converted into configuration space
for use by the inverse dynamics routine. For now, we write this as f,(¢,, @,). So

our final control 7T is:

** SErvo

T =M@, £.(by, by By )+ Vg, £, Dy, b)) + Sy, (5.3.2)

We are left with the problem of finding the functions f,, and f,, which map

joint angle, rate and acceleration into the body rate and acceleration.

Joint Space to Configuration Space Transformation

The inverse dynamics were written in terms of joint angle, body rate, and body
acceleration. We need a function that will compute body rate given the joint state
of the system, and another function to compute body acceleration given the joint
state.

To derive these functions, we use conservation of momentum to supply the
missing equations (we are given N — 1 joint rates and accelerations, and need the
N body rates and accelerations). With e and L as defined previously, we write the

body rates in terms of the joint rates as follows:

q=qe+Ld (5.3.3)
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The interpretation of the above equation is that the rate of the first body in the
chain is propagated down the chain via the joint rates to give the body rates of the

other bodies. Premultiplying the above equation by the mass matrix, we have:
M(p)q =M@ e+M(@P) Lo
Next, we dot both sides with e:
e-M(@)q=ge Mpe+e -M(@p)L

We now recognize that the quantity on the left is the angular momentum of the
system, p. In general, this is a known constant, since momentum is conserved by

the system. In our case, we take p = 0, which gives us an equation for ¢,:

_ e-M@L¢
q, = — m (5.3.4)

Substituting ¢; into equation 5.3.3 gives us f,:

. M) L d ,
fu(¢,¢)=q=—e—ej-M%%)T¢e+L¢

For the accelerations. we differentiate equation 5.3.4, obtaining the relationship:

. eM@ALPe- MLy o MA 4o M@PLS
"= (e-M(g) e e M@ e

The other accelerations are found from the time derivative of equation 5.3.3:

£, D=4 =0, b Pe+Lo
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Projector

There is a problem with the control law (5.3.2). In general, the law is unphysical,
since the sum of the elements of the torque vector do not always add to zero.
For a model of a physical system, controlled by motors at the joints, the torques
generated are internal, and thus should add to zero.

We solve this problem using a projector. We derive a matrix P that will transform
a nonphysical torque vector into a physical one. We also require that P leave
physical torque vectors unchanged. We write the physical requirement as follows.

We rewrite (5.3.2) leaving out the arguments of f, and £, for brevity:

T = M(@,) £ + Vi, £,) + Sy,

Then the matrix P should transform 7 into a physical torque T:

T=PT

If T is physical, we have e - T = e - P 7 = 0. This holds if the physical condition is
met:

Ple=0 (5.3.5)
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We also require that P leave unchanged torques that are already physical. In
the setting of planar N-body problems with applied internal torques due to joint

motors, we can write the physical torque vector as:

T
-1 +7
D+ T3
T =
—TN-_2+TN-1
~TN-1
1 0 0 0l r ~
1
-1 1 0
™
0 -1 1 0
= %
0 0 -1 0
1
TN-1
0O --- 0 0 -1 ; )

= QT
The requirement that P not change physical torques is equivalent to writing
PQT=Q7T

for all motor torque vectors T. We can thus write the other requirement for P as:

rQ=Q (5.3.6)
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If one writes down the N x (N — 1) equations in (5.3.6) and substitutes them
back into (5.3.5), one finds that (5.3.5) only provides one additional independent
equation. We thus have N2 — (N — 1) equations in the N2 unknown elements of P,
which gives us a family of solutions parameterized by N — 1 parameters.

For the N =5 case, we give the general form of P in terms of five parameters

and one constraint (equivalent to four independent parameters):

o a—1 a-1 a-1 a-1

-1 B p-1 -1 -1

y—=1 y-1 5 y—1 y-1 , where a+ 3+~v+6+ec=4

A block diagram of the control system we have just completed describing is
given in Figure 5.6. The block labeled D-1 represents the inverse dynamics, D

represents the dynamics, and P represents the projector.

Trajectory Generator

For a joint motion from one angle to another, we use a ramp-ramp trajectory, so
named for the shape of the velocity profile. See Figure 5.7. In a more general
system, there would be a maximum motor velocity imposed, which results in

velocity limiting. This results in a velocity profile called ‘ramp-coast-ramp.”

The trajectory generator takes desired joint acceleration magnitude ¢,, final
time ty, initial joint angle ¢y, and final desired joint angle d)f, and for the current

simulation time ¢, computes the next desired joint state of the system. The equations
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Figure 5.6: Block diagram for the joint-servo control system

of the three profiles in Figure 5.7 of a single joint are:

\

b.) = +y
. o ly
Gu) = Byt 0<t<d
) = Fd P +¢y |
qu(t) = —(lgd
, o t
@) = @ty —1) Ef<7fStf
i) = =5 Pylty — 17 +¢; |

The collection of angle, velocity and acceleration trajectories for all of the joints
that take the system from one point in joint state space to another is called a path

segment. The planner outputs a plan which consists of several path segments. The
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Figure 5.7: Ramp-ramp trajectories for a single joint
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trajectory generator accepts the plan as input, and at each iteration, checks for a
path segment switch. This happens when the simulation time ¢ exceeds the motion
duration ¢, for all joints. At this point, the simulation time ¢ is reset to zero, and
the plan step counter is incremented.

The trajectories used here are such that when taken in succession, the velocity
profile of each joint is piecewise linear.

We will go into more detail about the planner during the discussion of the

simulator in the following section.

5.3.3 Simulator

The simulator handles the interface to the world model (the collection of the mass
property information and the state of the system), the planner, the dynamics, and
the kinematics. The torque calculated by the controller and the state of the system
from the last iteration (from the world model) is fed into the dynamics to yield the
current state of the system. This is stored in the world model, and the forward
kinematics are used to find the center of mass locations for each body, given the
absolute body angles. The center of mass locations are and body angles are output
over the network to the graphics client.

The graphics client may have a request for the server to act upon. This is

handled by the command processor.
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Command Processing
There are four commands implemented so far:

RESET — This is used to initialize the system, and to set all system parameters to

their default values.

MATRIX — This command toggles between two matrix inversion routines used by the

linear equation solver: Gauss-Siedel, and LU decomposition.

CONTROL — This is used to update all system parameters to the values received from
the graphics client. This includes desired system rotation, masses, lengths,

inertias, and time step.

QUIT — This is used to perform an orderly shutdown of the system. The QUIT
command is echoed back to the graphics client, and the process exits to the

operating system.

When the CONTROL command is received from the client, the new mass property
information is used to update the mass coefficient matrix, which contains the &, ;
values described in the last chapter. In addition, the new value for the desired

system rotation Af, is input to the planner to generate a new plan.

Planner

We define a plan as a set of connected path segments. Each plan is designed to
accomplish a task. In our case, the task is to reorient the chain of rigid bodies,

achieving the desired rotation, A4, .

63



So far in this chapter, and in the previous chapter, all of the algorithms and their
implementation were designed with the general N body chain in mind. When ap-
propriate, examples were given with N = 3 in the interest of showing the structure
of the equations for a case containing a middle body, while keeping the expressions
reasonably short.

From this point forward, we will take N = 5, and design a plan generator
specific for this chain. We will speak of the four joints of the chain as the two
shoulder joints, and the two elbow joints, with a planar FTS in mind (Figure 5.1)
as an example.

The general form of the plan, parameterized by an angle o, is as follows.

1. The system is initially at rest, with all joint angles zero.

2. The shoulder joints move in opposite directions, to an angle a.

3. The elbow joints move to an angle of 180 degrees, folding the arms.

4. The shoulder joints move back to zero, carrying a smaller load.

5. The elbow joints move back to zero, unfolding the arms.

This plan results in a net rotation of the system, with a magnitude that is a
function of the displacement a. The goal of the planner is to determine the angle a
that will yield the desired system rotation, and generate the four step plan described
above that is input to the trajectory generator.

The joint angle profiles for our plan are shown in Figure 5.8. These four profiles

taken together form the shape space loop I" over which we integrate equation 5.2.1.
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The motion of the chain is depicted at the bottom of the figure via snapshots at the

end of each path segment.

We now give the result of working out the integral for our path:

A0, = / ha3 + ncos(én) ddp + / A(a) + B cos(¢y) + C cos(¢y + o) i
o o +2ncos(d) D(a) + 2B cos(¢r) + 2C cos(¢1 + @)
N /0 h3s + (H — C)cos(¢z) déy
L +2(H - C)cos(¢)
0
[ 402 Ot ot
where:

o = hii+hya+haz+haa+hss+2hip+hia+hys+hog+hos+ hys)

n = hizt+hyz+hsa+has
Ala) = Mhpp+hgsz+hag+2hya+2(ho3+ haa)cos(a)

B = hip+hyg+hys+hys

C = h1,3+h3,5

=
2
I

hi1+ ha2 + haa + haa+ hss +2(h15 + hpa) +2(ha 3 + h3 4) cos(a)

H = hyz+hgy

~
il

hi1+hop+has+hga+hss+2(his+hoa—h1o—hia—hos — hags)

Now that we have written down the relationship between a and Af, in terms
of the mass properties of our system, it is fairly straightforward to invert (5.3.7)
numerically. The following sequence of actions is performed when the system

initializes, and whenever the mass properties of the system are changed.
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Figure 5.8: Definition of shape space loop
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First, using the Rhomberg integration routine provided in [8], we evaluate equa-
tion 5.3.7 for twenty values of o evenly spaced over the region of interest, which
we take to be (0, 7). This gives us the function in tabular form.

Next, we fit a five term polynomial to the tabular data, making use of the Least
Squares routine in [8]. This gives us a close approximation to the relationship,
using a well behaved function. Finally, we find the root of the polynomial in the
region of interest to give us our answer, a, given Af,. An alternative approach
would be to use linear interpolation on the tabular data.

Once « is known, it is a simple matter for the planner to fill in the plan struc-
ture needed by the trajectory generator. The plan can be thought of as four two
dimensional arrays. The indices for all of the arrays are the joint (1 — 4), and the
plan step (1 - 4). The four pieces of information for each of the sixteen joint/step
pairs are the initial angle ¢y, the final angle ¢, the desired acceleration ¢,, and the
final time #;. The first three of these are shown in Table 5.1. The same acceleration

a is used for all motions, since it doesn’t have any effect on the system rotation.

The last task for the planner is to calculate the final times for each of the sixteen

joint/step pairs using the formula:

@5 — ol

tp=2,| L2

¥
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Plan Step

Joint || 1 2 3 4

1 0 0 T T

bo 2 0O alal|0O
3 0 |~a|—-a] O

4 0 - | -7

1 0 T T 0

@ 2 a |l a | 0|0
3 —al|—-—a]| O 0

4 0O |-nx| -] 0

1 a 0 | —a

o, 2 0 [-al] O
3 —a | O a 0

4 0O |-a]| O a

Table 5.1: Definition of the plan

5.4 Client/Server Interface

Until now, we have deferred the discussion of the data that is passed back and forth
between the client and server, and the protocol they use. The physical connection
between the two processes is Ethernet.

Layered on top of the Ethernet protocols is the Internet Protocol (IP), and the
Transmission Control Protocol (TCP). As discussed in chapter 3, UNix provides
the programming interface to the TCP/IP socket abstraction via system calls. The
libipc(3) library, described in chapter 3, is used to open the connection for bidirec-
tional data flow between the client and the server. However, all of the data and
protocol used by the two simulation partners is left entirely up to the designer.

We begin by discussing initialization and shutdown. The system is started by
a user seated at the graphics workstation. The graphics client program is invoked

at the shell prompt, with the name of the server machine passed on the command
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line. The server program is invoked by the client program using a system call and
the rsh mechanism. Once the socket connection is established, the client sends the
server a RESET command, in order to receive the initial locations of the objects to
animate on the screen.

At the end of the simulation, upon user request, the graphics client program
sends the server a QUIT command, waits for an acknowledgement, and then ter-
minates.

At any time during the simulation, the user can request changes in the mass
properties of the system. When done specifying the new data using the graphical
user interface, the user hits the Send Data button. The client program assigns this
command a new sequence number, and sends a packet of data to the server. It then
ignores all data packets received from the server until it receives one containing
the new sequence number. The client then begins animating the new simulation.

The data formats for client to server and server to client have much in common,
but are not the same. Table 5.2 shows the data sent from the client to the server,
and Table 5.3 shows the data sent from the server to the client. (The initial angle

and velocity data is used to study the free dynamics of the system.)

5.5 NASREM

The NASA /NBS Standard Reference Model for Telrobot Control System Architec-
ture (NASREM), is helpful for laying out distributed robot control systems. In this
section, we begin by giving a brief overview of NASREM, and then show how our

control system fits into the general NASREM structure.
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| Item | Description

tag The command sequence number

command The command in integer form

TimeStep | The simulation time step
InitAng[] | The initial body angles
InitVel[] | The initial body rates

Mass[] The masses of the bodies
Inertia[] | The inertia about the body center of mass

Length[] | The joint to joint body lengths

iter The number of iterations for Gauss-Siedel inversion

gauss The LU decomposition or Gauss-Siedel matrix inversion
toggle flag

phase The desired system rotation

Table 5.2: Data sent from client to server

5.5.1 NASREM Overview

The NASREM architecture, described in [1], specifies an approach for telerobot
control based on a hierarchy for each of three system components: SENSORY
PROCESSING, WORLD MODELING, and TASK DECOMPOSITION. There are six levels de-
scribed for each: SERVICE MISSION, SERVICE BAY, TASK, E-MOVE, PRIMITIVE, and

COORDINATE TRANSFORM SERVO (see Figure 5.9).

The TASK DECOMPOSITION modules are responsible for decomposing a goal into
its components, from a high level manipulative goal down to low level motor
torque commands. These modules are also responsible for monitoring the status

information returned from the lower level modules.
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| Ttem | Description
tag The command sequence number

command The command in integer form

TimeStep The simulation time step
InitAng[] | The initial body angles
InitVel[]l | The initial body rates

Mass[] The masses of the bodies
Inertia[] | The inertia about the body center of mass

Length[] The joint to joint body lengths

iter The number of iterations for Gauss-Siedel inversion

gauss The LU decomposition or Gauss-Siedel matrix inversion
toggle flag

phase The desired system rotation

x[] The array of x coordinates of the bodies

y[1 The array of y coordinates of the bodies

ang[] The array of body attitudes

eqmo The sum of the absolute values of the LHS of the equations
of motion (should be zero)

momentum The momentum of the system (should be constant)

lagrangian | The difference between kinetic and potential energies in the
system

Table 5.3: Data sent from server to client

Each TASK DECOMPOSITION module consists of three submodules:
e Job assighment manager

e Planners

e Executors

The job assignment manager decomposes a task into jobs to be performed by a

planner/executor pair. Jobs are executed concurrently, with a planner composing
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Figure 5.9: NASREM hierarchy definition

a plan consisting of a sequence of actions to perform, and the executor executing

the plan.

The SENSORY PROCESSING modules are responsible for providing all levels of

the world model with current input. Higher level responsibilities include obstacle

detection and object recognition, and lower levels include feature extraction and

edge detection.
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The WORLD MODELING modules are responsible for servicing information requests
from other modules and maintaining all of the data describing the system under
control and its environment. This data must be broken down into the different
levels and representations required by all of the other modules.

All of the data in the world model is stored in global memory. This memory
need not reside on the same machine or even the same bus, but all modules must be
able to address all of the data. The flow of information among horizontal modules
is such that the data rate on a given level is approximately an order of magnitude
slower than the rate on the level below. Data passing back and forth vertically
along the hierarchy is usually such that commands are passed down the hierarchy

and periodic status updates are passed up the hierarchy.

5.5.2 NASREM Breakdown of Chain System

Below, we will show how the system described here fits into the NASREM ap-
proach.

Since our system controls a simulation, not real hardware, we are obviously
lacking in Sensory Processing support. As such, we won’t bother discussing sensor-
related issues as they pertain to NASREM.

Our system lives in a very simple two dimensional universe, free from obstacles
and other manipulators, so the World Modeling software consists of routines that
maintain only data describing our chain. Still, we will make note of the fact that
this data is separated into two categories: relatively static (constant until the user

wishes to change it), and dynamic (data that changes at nearly every simulation
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iteration). The static information includes the mass properties of the system, the
time step, and the desired system rotation. The joint and body angles, rates, and
accelerations make up the dynamic information.

It makes sense to place control of the dynamic information in the world model
at the lowest level of the hierarchy, and control the static information from higher
levels. At the highest level, access to static information is done via the graphical
user interface running on the graphics machine. At lower levels, state informa-
tion is updated by the simulation loop as a result of running the dynamics and
kinematics at each iteration.

The Task Decomposition portion of our system is broken down into three NAS-
REM levels as follows (see Figure 5.10). At the lowest level we have the servo
controller, which implements a partitioned PID control law to determine the con-
trol torque for the system. The control software one level above this is the trajectory
generator, which takes a plan as input, and outputs piecewise linear velocity tra-
jectories, and corresponding joint angles and accelerations. One level above this
is the planner, which takes desired system rotation as input, and calculates a plan

consisting of four path segments that will achieve the desired rotation.

While our planner is very specific, it does represent a PRIM level module in the
NASREM hierarchy for Task Decomposition. Our trajectory generator represents

an E-MOVE module, and our servo controller is at the SERVO level.
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Figure 5.10: NASREM levels of chain attitude control system

We note that our system only barely spans three of the six levels described by
NASREM. This illustrates how general the NASREM architecture is. At the highest
level, the input is a command such as SERVICE SATELLITE, and at the lowest level,

it is a joint motor torque.

5.6 Summary

We began our description of the control system for our simulation with a discus-

sion of how a floating robot can reorient itself in a zero gravity environment by
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‘swimming in space,” or moving its manipulators through shape space loops. We
then discussed how the equation for the attitude change was implemented.

We described each component of the control system, and how it interfaces with
the others. We defined the protocol used by the client and server to communicate,
and what data they pass back and forth to each other.

We completed the control system description with a discussion of how it relates

to the NASREM architecture.
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Chapter 6

Conclusion

6.1 Summary

This work covers a broad range of topics relating to real-time simulation of dy-
namical systems. In order to improve the performance of the simulation, we have
shown how to employ the Client/Server model to break the problem into two
pieces.

We discussed the design issues involved with making the best use of the simu-
lation iteration time period for numerical and graphical calculation. We reviewed
object oriented graphics software design, and presented some of its merits and
drawbacks. We found that implementing object sorting in software was a reason-
able compromise between display realism and performance.

We discussed the user interface in some detail, presenting two different graph-
ical approaches. We found that graphical user interfaces are a convenient means

for making erroneous user input impossible.
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The connection between the two parts of the simulation over the network was
discussed. The Berkeley Unix Interprocess Communications facilities were pre-
sented, along with the design of libipc(3), a collection of IPC programming tools
utilized by researchers in the Intelligent Servosystems Laboratory.

We studied the dynamics of a chain of rigid bodies moving in the plane. The
mass properties were written as in [12], and the equations of motion were derived
in a Lagrangian setting. We then showed how to apply the Newmark technique to
solve the equations. We showed how the MACSYMA system was used to facilitate
the symbolic calculations, and produce C source code ready to incorporate into the
simulation.

Finally, we studied the attitude control problem for the chain. We found that the
lack of a fixed point in the system led to complications in the control law design.
This was due to the fact that the equations of motion were written in configuration
space, and servoing is most naturally done in joint space. We presented a solution
to this difficulty derived from momentum conservation. The control software was
found to have many similarities with the NASREM architecture, developed at the
National Institute of Standards and Technology, although this was not an original
goal.

During the course of this work, the idea of distributed computing has become
increasingly popular. We have several suggestions for continuing research in this

area, taking advantage of recent industrial advancements.
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6.2 Recommendations for Future Work

In the following sections, we give ideas and suggestions for work that we feel

should be done in the areas we have explored in this research.

6.2.1 Animation

In order to take advantage of the new graphics workstations that are capable of ani-
mating a fairly complex scene using Gouroud-shading, a small library of primitive
solid (or surface) shapes should be constructed. Gouroud-shaded models could
then be built out of these primitives.

Often, as in the case of our space station simulation, data for an object in the
simulation comes from a Computer Aided Design (CAD) package, in the form of
an Initial Graphics Exchange Specification (IGES) file. This data usually contains
only wireframe information. It is possible to take wireframe data and synthesize a
surface that bounds it, for use in the animation. An algorithm for surface synthesis

should be implemented.

6.22 NeWS, X, Open Look and Motif

There are many standards, formal and defacto, emerging in the areas of distributed
computing, portable and open operating systems, and graphical user interfaces.
The battle between Unix International (U, which includes AT&T and Sun) and the
Open Software Foundation (OSE, which includes IBM, DEC, and HP-Apollo) will

produce several powerful tools for research in distributed simulation.

79



In chapter 2 we presented two approaches to the problem of creating a Graphical
User Interface (GUI) to the simulation. Neither of these was based on a standard of
any kind. This is because at the time of implementation, there was no clear choice
as to what would be the standard graphical user interface. Today, we know that
there are two main contenders: Motif, from the OSE and Open Look, from UL

Motif derives from the X Window System (X), and Open Look is a descendent
of the Network extensible Window System (NeWS). Both offer similar capabilities,
with the main advantages being portability and look-and-feel.

The NASA/AMES Panel Library, introduced in chapter 2, has an outstanding
look-and-feel, but only runs on Silicon Graphics workstations — a serious draw-
back.

Porting the user interface of our simulation to one of the two emerging stan-
dards would make many more Client/Server hardware combinations possible, and

would allow our lab to share software with other research institutions more easily.

6.2.3 RPC and XDR

Sun Microsystems created one of the first defacto standards in the workstation
market with the Network File System (NFS). Two of the peripheral parts of NFS
are the eXternal Data Representation library and specification, and the Remote
Procedure Call (RPC).

In chapter 3 we discussed the difficulties involved with transferring data from
one machine to another in a heterogeneous network. ASCII message passing is

often used, but is exceedingly slow. We decided to take advantage of the fact
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that the ISL's computers all have nearly identical data storage formats, by passing
structures of data back and forth between them.

While this method is fast, it is clearly not portable, say, to VAX computers, since
they store data differently from most workstations.

To make the data transfer more robust, eXternal Data Representation routines
should be used to provide a means of encoding and decoding local structures
of data into a network standard formant. This would allow simulations to be
distributed over IRISs, Suns, HPs and VAX workstations, among others.

If the routines prove to be fast enough, the Remote Procedure Call provided
with NFS should also be used. Using this method of interprocess communication
hides the data format problem within a higher level interface between programs
on different machines. Eventually, libipc(3) could be replaced with a supported

product.

6.2.4 The Network Computing System

What makes matters difficult is that the two Unix factions both have solutions to
distributed computing problems [4]. The Network Computing System, originated
by Apollo, is perhaps the most impressive. It includes an RPC specification incom-
patible with Sun’s, and a data representation scheme known as the Network Data
Representation model (NDR). Instead of always transforming data from a local
representation to a network standard, as in XDR, the NDR method tags the data,
identifying the type of machine from which it was sent. If the destination machine

has the same format, the conversion process is bypassed.
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Perhaps the most interesting part of NCS is the Location Broker (LB). Using the
LB, one can set up a network of machines that cooperate to provide computation
services for each other. A client process is described by an estimate of the resources
it will require, and is submitted to the LB. The LB then polls the available machines
on the network for bids on the task, that are weighted based on the required
resource mixture. The task is given to the machine giving the highest bid.

Sun offers a system called Open Network Computing (ONC) that encorporates
NFS, XDR, and the yellow pages service to accomplish similar results.

Both of these systems should be evaluated for applicability to the research plans

of the ISL.

6.2.5 Dynamical Modeling and Numerical Solution

A motor model should be added to the dynamical simulation, including bearing
friction. Corresponding to this, a maximum motor speed (and hence joint rate)
would be imposed, so the trajectory generator should be modified to use a ‘ramp-
coast-ramp’ velocity profile when necessary.

The zero-gravity three dimensional dynamics of simple manipulators with rev-
olute joints should be studied. The results of these simulations would be of use to
the long term FTS project.

As the models become more complicated, more sophisticated numerical meth-
ods will be required. Other forms of the Newmark technique may be more suitable

to these problems.

82



pg——————> fa agx

¢d fp qd
a:crvc —q—J
qq - P T P I D
qdr q
e
. ‘.‘d JA
bs fy +\):./.

Figure 6.1: Block diagram for the body-servo control system

6.2.6 Control System

The servo portion of the partitioned control law discussed in Chapter 5 was com-
puted in joint space. It is possible to do this in configuration space. This would
require the existence of a transformation from desired joint state information to de-
sired absolute body angles. Integrating the f, transformation derived in Chapter 5
would produce the desired relationship, f,. The feedback loop would then be free
from transformations between joint space and configuration space — everything
would be done in configuration space. The block diagram for this system is shown
in Figure 6.1. The configuration space servo law should be compared with the joint

space servo law.
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For either of these control systems, the PID gains should be generalized from
their present scalar form to diagonal matrices. Gain scheduling, based on the
system’s configuration, may be helpful.

The trajectory generator used in the present system makes a transition from
one path segment to the next based on the motion duration for all of the joints.
A further check might be appropriate. Before executing a path segment switch
(switching to the next ‘ramp-ramp’ trajectory in the plan), all of the joints should
be given several iterations to settle to within some tolerance of their desired joint
angles.

Finally, the planner should be considerably more general. Different plans
should be made available, with at least one plan defined for each of the num-
bers of degrees of freedom (DOF) possible for a given system. For example, in the
five body system, we have implemented a four DOF plan. The same system is
capable of executing two and three DOF plans as well, so these should be made

available as options.
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Appendix A

Libipc(3) Source Code

/* "ipC.C" */

#ifndef lint
static char SccsIdIpcl[]l = "YW} 4HA ATA";
#endif

#include <stdio.h>
#include "islipc.h"
#include "debug.h"

extern int NewRequest;
/*
(Must be declared by the user.
Used for signaling receipt of SIGIO interrupt.)

*/

start_server(remote_host, service, sock)

char *remote_host, *service;

int *sock;

{
char command[1024], local_host[25], cLocalPort[10];
int s, ilLocalPort, namelen = 24;

struct hostent *hp, *gethostbyname();
/*

Get local host’s name
*/

gethostname(local_host, namelen);
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/*
Get local host’s hostent struct to find local host aliases
and for use by passive_socket()
*/
if ((hp = gethostbyname(local_host)) == 0) {
perror("ipc: gethostbyname()");
exit (EGETHOSTBYNAME) ;
}
/*
Create a passive socket on which to listen
*/
passive_socket(&s, &iLocalPort, hp);
itoa(iLocalPort, clLocalPort);
/*
System() fork()’s a child and exec()’s /bin/sh to execute
the rsh command, firing up the remote server. The local
host’s alias is used because the VAX gethostbyname(3N)
only accepts the full host name. This way, VAXs and Suns
(et al) can be used as servers.
*/
#ifdef IRIS
sprintf (command, "rsh %s ’%s %s s’ &",
remote_host, service, hp->h_aliases[0], cLocalPort);
# else
sprintf (command, “rsh %s ’Ys %s %s’ &",
remote_host, service, local_host, cLocalPort);
#endif

if (system(command) == ERROR) {
perror("ipc: system() (fork() or exec())");
exit (ESYSTEM);
}
/*
Accept connection requests
*/
if ((*sock = accept(s, 0, 0)) <= 0) {
perror("ipc: accept()");
exit (EACCEPT) ;
}
}
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passive_socket(sock, local_port, hp)
int *sock, *local_port;
struct hostent *hp;
{
int length, i;
struct sockaddr_in sin, system_sock;
/*
Create a socket
*/
if ((*sock = socket (AF_INET,SOCK_STREAM,0)) < 0) {
perror("ipc: socket()");
exit (ESOCKET);
}
/*
Initialize socket data structure
*/
sin.sin_family = AF_INET;
bcopy(hp->h_addr, (char *) &(sin.sin_addr.s_addr),
hp->h_length);
/*
Request system to assign a port
*/
sin.sin_port = htons(0);
for (i = 0; i < 8; i++)
sin.sin_zero[i] = ’\0’;
/*
Bind socket data structure to this socket
*/
if (bind(*sock, &sin, sizeof(sin))) {
perror("ipc: bind()");
exit (EBIND);
}
/*
Get the port that the system assigned
*/
length = sizeof (struct sockaddr_in);
if (getsockname (*sock, &system_sock, &length)) {
perror("ipc: getsockname()");
exit (EGETSOCKNAME) ;
}
/%
Return socket port assigned by the system
*/

*local_port = htons(system_sock.sin_port);
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/*

Prepare socket queue for connection requests
*/

listen(*sock, MAXREQUESTS);
¥

connect_socket(sock, host, charPort)
int *sock;
char xhost, *charPort;
{
int i;
struct sockaddr_in sin;
struct hostent *hp, *gethostbyname();
/*
Create the socket
*/
if ((*sock = socket (AF_INET,SOCK_STREAM,0)) < 0) {
perror("ipc: socket()'");
exit (ESOCKET) ;
}
/*
Initialize socket data structure
*/
if ((hp = gethostbyname(host)) == 0) {
perror("ipc: gethostbyname()");
exit (EGETHOSTBYNAME) ;
}

sin.sin_family = AF_INET;

bcopy(hp->h_addr, (char *) &(sin.sin_addr.s_addr),
hp->h_length) ;

sin.sin_port = htons(atoi(charPort));

for (i = 0; i < 8; i++)

sin.sin_zero[i] = ’\0’;
/*
Connect to remote host
*/
if (connect(*sock, &sin, sizeof(sin)) < 0) {
close(*so0ck);
perror("ipc: connect()");
exit (ECONNECT) ;
}
}
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data_present(sock, time_out)

int sock;
long time_out;
{

fd_set fds;

struct timeval timeout;
short result;

FD_ZER0O(&fds);
FD_SET(sock, &fds);

timeout.tv_sec = time_out;
timeout.tv_usec = 0;

if ((result = select(FD_SETSIZE, &fds, NOFDS, NOFDS,
&timeout)) == ERROR) {
perror("ipc: select()");
exit (ESELECT) ;
}

return(FD_ISSET (sock, &fds));

send_structure(sock, ptr, size)
int sock;
char *ptr;
int size;
{
int sent, acc=0, RETRY=FALSE;
char log_buf[132];
static int count=0, retries=0;

while (acc < size) {
if ((sent = write(sock, (char *) (ptr+acc),
size-acc)) < 0) {
perror("ipc.c: send_structure()");
exit (EWRITE) ;
} else {
acc += sent;
if (acc < size) {
RETRY = TRUE;
retries++;
}
iy
}
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#ifdef DEBUG
count++;
if (RETRY) {
sprintf(log_buf, "count: %d, retries: %d\n", count,
retries);
log_message(log_buf
)
#endif
}

FILE LINE__);

? - ——— 3 -

receive_structure(sock, ptr, size)
int sock;

char *ptr;

int size;

{

int got=0, acc=0;

while (got < size) {
if ((got = read(sock, (char *) (ptr+acc), size-acc)) < 0) {
perror("ipc.c: receive_structure()");
exit (EREAD);
} else {
acc += got;
}
}
}

#ifndef IRIS
init_isr(sock)
int sock;
{
int sigio_isr();
/*
Cause sigio_isr() to be invoked upon receipt of SIGIO signal
*/
signal (SIGIO, sigio_isr);
/*
Set the process group receiving SIGIO/SIGURG signals
to this process group. Note the minus sign.
*/
if (fcntl(sock, F_SETOWN, -getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);

}
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/*
Allow receipt of asynchronous i/o signals
*/
if (fcntl(sock, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC");
exit(1);
}
}

sigio_isr()
{
/*
Cause sigio_isr() to be invoked upon receipt of SIGIOD signal
*/
signal (SIGIO, sigio_isr);

/*
Set flag for server process indicating presence of new client
request

*/
NewRequest = TRUE;

by

#endif

/*

Close_sock() isolates the close()’s, should something more
elaborate be required later.

*/

close_sock(sock)
int sock;

{

close(sock);

}
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itoa(n,s)
int n;
char *s;
{

int 1 = 0, sign;

if ((sign = n) < 0)

n = -n;

do
s[i++] =n % 10 + ’0’;
while ((n /= 10) > 0);

if (sign < 0)
s[i++] = °-7;

s[i] = °\0’;

reverse(s);

reverse(s)
char *s;
{

int ¢, i, j;

for (i = 0, j = strlen(s) - 1; i < j; i++, j--) {
c = s[il;
s[i] = s[j]l;
s[j] = c;
}
}
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Appendix B

Libipc(3) Manual Pages

NAME
libipc(3) — Interprocess Communications Library

SYNOPSIS
start_server(remote_host, service, sock)
char *remote_host, *service;
int *sock;
passive_socket(sock, local_port, hp)
int *sock, *local_port;
struct hostent *hp;

connect_socket(sock, host, charPort)
int *sock;
char *host, *charPort;

data_present(sock, time_out)
int sock;
long time_out;

send _structure(sock, ptr, size)
int sock;

char *ptr;

int size;

receive_structure(sock, ptr, size)
int sock;

char *ptr;

int size;

init_isr(sock)

int sock;

close_sock(sock)
int sock;

int NewRequest;
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DESCRIPTION
Libipc(3) is a set of functions designed to facilitate the development of dis-
tributed applications using the Interprocess Communications facilities of
UNix 4.3BSD. The user is isolated from the rather nasty IPC system calls,
and needs not understand the use of such functions as socket(2), bind(2), con-
nect(2), accept(2), select(2), listen(2), getsockname(2), gethostname(2), and gethost-
byname(3N).

Most users will not need to use the passive_socket(3) function — it is called
by start_server(3) to establish a simple bidirectional communications stream (a
stream socket) between two processes that aren’t necessarily running on the
same machine.

The most efficient use of this library is for users to declare the external integer
NewRequest, and check this flag to see if new data has arrived on the socket.
NewRequest is set to TRUE by an interrupt service routine initially enabled by
calling init_isr(3).

ERRORS
All system calls are checked for erroneous return values. In such cases, an
error message is printed on the standard error file using perror(3C), and an
exit status corresponding to the error is returned with an exit(2). The exit
codes are defined in .../local/include/islipc.h.

AUTHORS
Russell Byrne, Amir Sela

FILES
(Present on each machine.)
...local/include/islipc.h
...local/lib/libipc.a

NOTE
The communication initialization sequence is as follows:

1. The client process uses start_server(3) to invoke the specified program on
the specified machine. This call blocks until:

2. The server process uses connect_socket(3) to connect to the client.

3. Both sides return, with the pass-by-reference integer parameter set to
a non-negative integer which is a descriptor for the stream socket con-
nection. This socket descriptor my then be used freely with the read(2),
write(2), send(2), and receive(2) functions.

4. If asynchronouse file I/O is available on a machine!, then the process
on that machine should declare the global variable NewRequest, and
call init_isr(3) before entering the simulation loop. When new data is

'Such as any Sun workstation; to check, see if the constant FASYNC is defined in
/usxr/include/sys/fcntl.h
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available on the socket, this flag will be set to TRUE by an interrupt
service routine.

EXAMPLES
The following code and makefile fragments should explain the details of how
to use this library. In the example, data is written from the server to the client,
the other direction is left out for brevity.

Here is a code fragment from the client (IRIS workstation graphics program):
/* "main.c" */
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];
{
/*
argv[1] is the name of the machine to use for the server
process.
*/
int sock;
char errmsg[80];
define data_struct as desired

if (argec t= 2) {
sprintf(errmsg, "\nUsage: /s: <remote host>", argv[0]);
perror(errmsg) ;
exit (EUSAGE);
}
/*
Initialize the stream socket
*/
start_server(argv[i], " byrne/chain/chain_server", &sock);
/*
sock is now ready for reading and writing

*/
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while (TRUE) {
if (user wants to quit) {
notify server
close_comm(sock) ;
exit(0);

}

if (datapresent(sock, (long) 0)) {
receive_structure(sock, data_struct, sizeof data_struct);

}

draw next graphics image
process graphical user interface inputs

Here is a piece of the makefile used to compile the above code on a 2000 or
3000 series IRIS:

0BJ = main.o
LIB = -lipc -1lbsd -1ldbm -Zg
CFLAGS = -c¢ -I/usr/include/bsd -I/usr/local/include

chainsim: $(0BJ)
cc -o chainsim $(0BJ) $(LIB)

Here is a piece of the makefile used to compile the above code on an IRIS
4D:

0BJ = main.o
LIB = -L/usr/local/lib -lipc -lbsd -lc.s -Zg
CFLAGS = -c -I/usr/local/include

chainsim: $(0BJ)
cc -o chainsim $(0BJ) $(LIB)
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Here is a fragment from the server code (simulation program running on a
Sun workstation):

/* "chain.c" */
#include <stdio.h>
int NewRequest=FALSE;

main(argc, argv)
int argc;
char *argv[];

{

int sock;

/*
Create socket and connect to client, using the port number
given by the client. argv[1] is the client machine name,
and argv[2] is the port the client is using to listen for
connection requests. Both of these arguments are set by
start_server(3).

*/

connect_socket(&sock, argv[1i], argv[2]);

init_isr(sock); /¥ initialize interrupt service routine */
do_data(sock); /* execute simulation loop */

}

do_data(sock)
int sock;
{
while (TRUE) {
if (NewRequest) {
NewRequest = FALSE;
if (datapresent(sock, (long) 0)) {
read data from client using sock
if (client wants to quit) {
close_sock(sock);
exit(0);
}

} /% data_present() */

do calculations, send result using sock

}

}
}
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Finally, here is a fragment from the above program’s makefile:

0BJ = chain.o
LIB = -L/usr/local/lib -lipc -1dbm
CFLAGS = -c -I/space/local/include

1]

chain_server: $(0BJ)
cc -o chain_server $(0BJ) $(LIB)

BUGS
Currently, the only IPC model easily implemented is the single client/server
pair. More elaborate schemes can be developed using passive_socket(3), con-
nect socket(3), and system(3), or fork(2) and one of the exec(3) functions.

The error handling should be redone, with the exit(2) calls replaced by a chain
of return statements, so exception handling can be done by the user.

Problem reports should be mailed to byrne@ra.src.umd.edu.
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Appendix C

MACSYMA Symbolic Manipulations

load("util_root: [macsymaltools.mac") ;

write_tex_file("defs.tex");
SHOW_MACSYMA_SOURCE_WITH_TEX_.CODE : FALSE $
NUMER : TRUE $

KEEPFLOAT : TRUE $

RATPRINT : FALSE §

/* TeX macros */

gput(mem, "{\\it h}", TEX_NAME) $
qput(qd, "{\\dot q}", TEX_NAME) $
gput(qdd, "{\\ddot q}", TEX_NAME) $
qput(epsilon, "\\varepsilon", TEX_NAME) $§
qput(i, "I", TEX_FUNNAME) $

qput(displaylines, [matchfix, "\\displaylines{\\quad ",
* \\quad\\cr}"], tex_op) $

qput(display_flush_left, [matchfix, "\\displaylines{\\quad ",
" \\hfill\\cr}"], tex_op) $

n:3%$

q : genvector(q, n) §

qd : genvector(qd, n) §

qdj : genvector(qdj, n-1) $

qdd : genvector(qdd, n) $

qddj : genvector(qddj, n-1) $

tau : genvector(tau, n) $

/*

Joint angle. Probablly should change theta(i,j) to

thetali,j].

*/

theta(i,j) := qlj, 1] - qli, 11 $

theta_dot(i,j) := adlj, 1] - qdli, 11 $
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/* 2D rotation. Z axis implied. */

rot2(ang) := matrix([cos(ang), -sin(ang)],
[sin(ang), cos(ang)]) $

sq_norm2(vec) := vec[1][1]**2 + vec[2][1]**2 §

dot2(a, b) := al1][11*b[11[1] + a[2][1]*b[2][1] $

dot(a, b) := sum(ali,1] * b[i,1], i, 1, n) $

grad(f, x) :=
block (
[temp, il ,
for i thru n do (
temp[i] : diff(f, x[i, 11)
),
genvector(temp, n)

) $

jacobian(funcs, vars) :=
block (

[jac_temp],

for i : 1 thru n do (
for j : 1 thrun do (
jac_templi,j] : diff(funcs[i,1], vars[j,1])
)

) ’

return(genmatrix(jac_temp, n, n))

) $

/* Mass distribution coefficients */
a(i, k) :=

if k = 1 then

if i = n then

0.0
else
-sum(epsilon[jl, j, i+1, n)
else
if 1 = n then
0.0
else

if 1 <= i and i <= k - 1 then
1.0 - sum(epsilon[jl, j, i+1, n)
else
if k <= i and i <= n-1 then
-sum(epsilon[j], j, i+1, n)
else
error("a(): Arguments out of range") §
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/* More mass distribution coefficients */
b(i, k) :=
if k = 1 then
if 1 = 1 then
0.0
else
-epsilon[i]
else
if i = 1 then
0.0
else
if i # k and 2 <= 1 and i <= n then
-epsilon[i]
else
if k = i then
1.0 - epsilon[k]
else
error("b(): Arguments out of range") $

/* Link lengths */
beta_tilde(i) :=
if i = n then
matrix([0.0], [0.0])
else
d[i] * matrix([1.0], [0.0]) $

/* CM locations */
alpha_tilde(i) :=
if i = 1 then
matrix([0.0], [0.0])
else
if i = n then
d[i] * matrix([1.0], [0.0])
else
kappa[i] * d[i] * matrix([1.0], [0.0]) $

/* Kinematics descriptor */
delta_tilde(i, k) := a(i,k) * beta_tilde(i) + b(i,k) *
alpha_tilde(i) $

/* Augmented inertia */
i_tilde(k) := i[x] + sum(m[j] * sq_norm2(delta_tilde(k,j)), j, 1, n) $

101



/*

Off-diagonal mass matrix elements (mcm is for Mass
Coefficient Matrix)

*/

lambda_tilde(j, 1) := mcm[j,1] * cos(theta(j,1)) $

/*
* mcf is for Mass Coefficient Function (portion of lambda_tilde
* not dependent on system configuration)
*/

mcf(j, 1) := sum(m[k] * dot2(delta_tilde(j,k),
delta_tilde(1,k)), k, 1, n) $

~
*

Generate the mass matrix as a function of the system
configuration (through lambda_tilde which depends on
cos(theta(j,1))) and constants independent of system
configuration. Also generate a similar matrix which
depends only on joint values, rather than absolute body
positions.
mass

mcm
i,i i,i

]

mass mcm cos(theta ), i< j

i,j i,j i,]

* ¥ X K ¥ X ¥ ¥ ¥ ¥

*/
for i_ind : 1 thru n do (
for j_ind : 1 thru n do (
if i_ind = j_ind then (
temp_mass[i_ind, i_ind] : mem{i_ind, i_ind],
temp_mass_joint[i_ind, i_ind] : ’mcm[i_ind, i_ind]
) else (
if i_ind > j_ind then (
temp_mass[i_ind, j_ind] : temp_mass[j_ind, i_ind],
temp_mass_joint[i_ind, j_ind] : temp_mass_joint[j_ind,
i_ind]
) else (
temp_mass[i_ind, j_ind] : lambda_tilde(i_ind, j_ind),
temp_mass_joint[i_ind, j_ind] : subst(qj[j_ind-1] +
sum(qj[k],k,i_ind,j_ind-2), q[j_ind][1]1-q[i_ind][1],
temp_mass[i_ind, j_ind])
)
)
)
) $

mass : genmatrix(temp_mass, n, n) §
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tex("The mass matrix is:", "\\bf H" =mass, " ") $
mass_joint : genmatrix(temp_mass_joint, n, n) $

/%

* Generate the time derivative of the mass matrix as a
* function of the system configuration and constants

* independent of system configuration:

* d

* -- mass =0

* dt i,i

*

* d

* ~-- mass = -mcm sin(theta ) theta_dot , 1< j
* dt i,j i,j i,j i,]

for i_ind : 1 thru n do (
for j_ind : 1 thru n do (
if i_ind = j_ind then
temp_mass_dot[i_ind, i_ind] : 0.0
else (
if i_ind > j_ind then
temp_mass_dot[i_ind, j_ind]
temp_mass_dot[j_ind, i_ind]
else (
temp_mass_dot[i_ind, j_ind]
-mcm[i_ind, j_ind] #* sin(theta(i_ind, j_ind)) =*
theta_dot(i_ind, j_ind),
temp_mass_dot[i_ind, j_ind]
subst (
qj[j_ind-1] + sum(qj[k],k,i_ind,j_ind-2),
qlj_ind] [1]-q[i_ind] [1],
temp_mass_dot[i_ind, j_ind]
),
temp_mass_dot[i_ind, j_ind]
subst (
qdj[j_ind-1][1] + sum(qdj[k][1],k,i_ind,j_ind-2),
qd[j_ind] [1]-qd[i_ind] [1],
temp_mass_dot[i_ind, j_ind]

)

)
)
) $
mass_dot : genmatrix(temp_mass_dot, n, n) $
tex("The mass matrix time derivative is:*, “\\dot{\\bf H}"
= mass_dot, " ") $
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/* Define the Mass Coefficient Matrix */
for i_ind : 1 thru n do (
for j_ind : 1 thru n do (
if i_ind = j_ind then
temp_mcm[i_ind, i_ind] : i_tilde(i_ind)
else
if i_ind > j_ind then
temp_mcm[i_ind, j_ind] : temp_mcm[j_ind, i_ind]
else
temp_mcm[i_ind, j_ind] : mcf(i_ind, j_ind),
print("Done with temp_mcm[",i_ind,"][“,j_ind,"]”)
)
) $
mcm : genmatrix(temp_mcm, n, n) $
close_tex_file() ;
write_tex_file("mass_coeff.tex") ;
tex("The mass coefficients ($h_{i,j}$) are:") $
for i : 1 thru n do (
for j : 1 thru i do (
tex(displaylines(’mem[i,j] = mem[i,j1))
)
) $

close_tex_file() ;

/* Forward kinematics */
for i_ind : 1 thru n do (
temp_cm[i_ind, 1] : sum(rot2(q[1, 1]) . delta_tilde(l, i_ind),
1, 1, n)[11[1],
temp_cm[i_ind, 2] : sum(rot2(qll, 1]) . delta_tilde(1, i_ind),
1, 1, n)[2]1[1]
) $
cm : genmatrix(temp_cm, n, 2) $
write_tex_file("fwd_kin.tex") ;
tex(" ", "The forward kinematics of the chain are:") $
for i : 1 thru n do (
tex(display_flush_left(x[i]
tex(display_flush_left(yl[il
) $

close_tex_file() ;

emli,11)) ,
em(i,2]))
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/* Dynamics begin here */

/* Stiffness matrix */
for i_ind : 1 thru n do (
for j_ind : 1 thru n do (
temp_stiff[i_ind, j_ind]
if i_ind = j_ind then
if i_ind = 1 then

s[1]
else
if i_ind = n then
s[n-1]
else

s{i_ind] + s[i_ind-1]
else
if abs(i_ind - j_ind) = 1 then
-s[(i_ind+j_ind+1)/2 - 1]
/* e.g, indices 3,4 and 4,3 give -s[3] */
else
0.0
)
) $
stiff : gemmatrix(temp_stiff, n, n) $
write_tex_file("dynamics.tex") ;
tex(" ", "The stiffness matrix is:", "\\bf 8" = stiff) §

/* calculate the term due to dL/dqd: */
for i thru n do (
for j thru n do (
dldqd_temp[i, j] : dot(grad(mass[i, jl, q), qd)
)

) $
dldqd_term : genmatrix(dldqd_temp, n, n) $

/* Joint to body conversion matrix */
for i_ind : 1 thru n do (
for j_ind : 1 thru n-1 do (
temp_m[i_ind, j_ind]
if i_ind > j_ind then
1.0
else
0.0
)
$

)
m : genmatrix(temp_m, n, n-1) §
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tex("The following matrix is used in the joint to body ",
"relationship: \\bf M" = m, " ") §

for i thru n do (
temp_e[i] : 1.0
) $

e : genvector(temp_e, n) $

e_dot_J_M_thetad : dot(e, mass_joint . m . qdj) $
e_dot_J_e : dot(e, mass_joint . e) §

omega[1] : - e_dot_J_M_thetad / e_dot_J_e $
for i : 2 thru n do (

omega[i] : ’omegal1] + sum(qdj[k][1], k, 1, i-1)
) $

omega : genvector(omega, n) $

e_dot_dJdt_e : dot(e, mass_dot . e) $
e_dot_dJdt_M_thetad : dot(e, mass_dot . m . qdj) $
e_dot_J_M_thetadd : dot(e, mass_joint . m . qddj) $

omega_dot[1] : ’e_dot_J_M_thetad x ’e_dot_dJdt_e /
(’e_dot_J_e * ’e_dot_J_e) -
(’e_dot_dJdt_M_thetad + ’e_dot_J_M_thetadd) / ’e_dot_J_e $
for i : 2 thru n do (
omega_dot[i] : ’omega_dot[1] + sum(qddj[k][1], k, 1, i-1)
) $

omega_dot : genvector(omega_dot, n) $

/* Dynamic equations. */

eq_lhs : mass . qdd + stiff . q + dldqd_term . qd -
0.5 * grad(transpose(qd) . mass . qd, q) $

eq_lhs : fullratsimp(eq_lhs) $

/* eq_rhs : j2b_tau . tau $ */
eq_rhs : tau $

/* eq_rhs : fullratsimp(eq_rhs) $ */
close_tex_file() ;

write_tex_file("scalar_dyn.tex") ;
tex("Substituting for the matrices defined above, we have the",
"following scalar equations:") §$
for i thru n do (
tex(displaylines(factorsum(expand(eq_lhs[i,1] = eq_rhs[i]))))
) $
close_tex_file() ;
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/%

Save a copy of the dynamic equations to use for inverse dynamics
*/

eq_dyn_lhs : copymatrix(eq_lhs) $

factorout_arg : [q[11[1]] $
for i : 2 thru n do (
factorout_arg : cons(qlil[1], factorout_arg)

) $

for i thru n do (
eq_dyn_lhs[i]J[1] : apply(’factorout, cons(eq_dyn_lhs[i][1],
factorout_arg))

) $

for i : 1 thru n-1 do (
for 1 : i+1 thru n do (
for m thru n do (
eq_dyn_lhs[m][1] : subst(qj[1-1] + sum(qj[k],k,i,1-2),
q[11[11-q[i1[1], eq_dyn_lhs[m][1]),
eq_dyn_lhs[m][1] : subst(-qj[1-1] - sum(qj[k],k,i,1-2),
q[il[11-q[11[1], eq_dyn_lhs([m][1])
)
)
)$

/*

* Here are the Newmark substitutions.

* q[1], qd[1], qdd[1], ..., q[N], qd[N], qdd[N] define the
* trajectory at time n+1. This is the unknown. All else
* is known. Constants an[i] and bn[i] are given by:

*

* h .

* an = g +-q

* i i,n 2 i,n

*

* 2

* . h

* bn = q +h q + --q
* i i,n i,n 4 i,n
*/

write_tex_file("newmark.tex") ;

107



for i_ind : 1 thru n do (
for j_ind : 1 thru n do (

def_qd[j_ind] : qd[j_ind,1] = h/2.0 * qdd[j_ind,1] +
an[j_ind] ,

def_q[j_ind] : q[j_ind,1] = h*%2.0/4.0 * qdd[j_ind,1] +
bn[j_ind] ,

eq_lhs[i_ind] : ratsubst(rhs(def_qd[j_ind]),
lhs(def_qd[j_ind]), eq_lhs[i_ind]) ,

eq_lhs[i_ind] : ratsubst(rhs(def_q[j_ind]),
lhs(def_q[j_ind]), eq_lhs[i_ind]) ,

eq_zero[i_ind] : factorsum(expand(eq_lhs[i_ind,1] -
eq_rhs{i_indl)) = 0 ,
print("Done with eq_zero[",i_ind,"1[",j_ind,"1")
)
) $

tex("After doing the Newmark substitutions, the dynamics ",
"are:") $
for i thru n do (
tex(displaylines(factorsum(expand(eq_lhs[i,1] = eq_rhs[il))))
) $

/*
Pick out the LHS of the eq_zero equations, which all
have a RHS = 0:
*/
for i : 1 thru n do (
temp_eq_zero_lhs[i] : lhs(eq_zero[i]) [1]
) $

eq_zero_lhs : genvector(temp_eq_zero_lhs, n) $
jacob : jacobian(eq_zero_lhs, qdd) $

GENTRANLANG : C $
CLINELEN : 65 $
GENTRANOPT : TRUE $
TEMPVARTYPE : double $
OPTIMPREFIX : 0 $
GENFLOAT : TRUE $
NUMER : FALSE $

gentranin("jac.mac_c", ["jac.c"]) ;

close_tex_file();
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Appendix D

Translation to C language

D.1 MACSYMA/C Template File
/* opt_jac3.c */

#ifndef lint
static char SccsIdOpt_Jac<<gentran(eval(n))$>>[] =
whwh AHA ATh
#endif

#include <<gentran(literal('<math.h>"))$>>

#define power(x,y) ((y) == 2 7\
((double) (x)) * ((double) (x)) : \
pow ((double) (x), (double) (y)))
#define NUM_BODIES <<gentran(eval(n)) $>>
<<NUMER : TRUE $>>
compute_jac(mem, h, an, bn, qdd, s, j)
double mcm[] [NUM_BODIES+1], h, an[], bn[], qdd[], s(J,
j (] [NUM_BODIES+1];
{
<<gentran (j : eval(jacob)) $>>
}
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compute_g(mcm, h, an, bn, qdd, tau, s, g)

double mcm[] [NUM_BODIES+1], h, an[], bn[], qdd[], taull,
s, gll;

{

<<

/*
For this function, we call OPTIMIZE() ourselves, rather
than letting GENTRAN() do it by setting GENTRANOPT to
TRUE. This is because the desired output is a single
dimensional array, which was treated as an nxl
matrix for MACSYMA’s matrix multiply. Thus, GENTRAN()
outputs an nxl array as the C language output.
We override this as follows.

*/

eq_zero_lhs_opt : optimize(eq_zero_lhs) $

opt_length : length(eq_zero_lhs_opt) $

for i thru opt_length - 2 do (
gentran (
literal (
"double 0", eval(i), ";", cr
)
)
) $

gentran(literal(cr)) $

for i thru opt_length - 2 do (
gentran (
literal (
non, eval(i), 0 o= n’
eval (
/* Get RHS of ’:’ assignment */

part (
/* Get current temp var. assignment */
part (eq_zero_lhs_opt, i+1),

gentran(literal(cr)) $

110



for i thru n do (

gentran (
literal (
"g[", eval(i), "] = ", eval(part(eq_zero_lhs_opt,
opt_length)[i,1]), ";", cr
)
)
) $
>>
}

D.2 Optimized C Language File

The output shown below is the C language translation of the output of the
OPTIMIZE() function of MACSYMA. This function uses a recursive algorithm to
search expressions for common subexpressions. When found, they are replaced
by a temporary variable. The output is a list of temporary variable assignments,
followed by the optimized expression using the temporary variables.

The function compute_jac() shown below is the output of GENTRAN(), with
the GENTRANOPT flag set to TRUE. This causes the OPTIMIZE() function to be called
automatically, and the temporary variables are declared as double because the
TEMPVARTYPE variable was set to DOUBLE.

For the function compute_g() we wanted more control over the translation,
since the default translation for an N element vector is an N x 2 array. So, we
called OPTIMIZE() directly, and used the PART() function to isolate the elements of

the block returned by OPTIMIZE() (see the previous section).
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/* “opt_jac3.c" x/

#ifndef lint
static char SccsIdOpt_Jac3[] =
"WWA AHA ATR";
#endif
#include <math.h>

#define power(x,y) ((y) == 2 7\
((double) (x)) * ((double) (x)) : \
pow ((double) (x), (double) (y)))

#define NUM_BODIES 3

compute_jac(mecm, h, an, bn, qdd, s, j)
double mem[] [NUM_BODIES+1], h, an[], bn[l, qdd(1, s[I,
3 [1 [NUM_BODIES+1];
{
double t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15
,t16,t17,t18,t19,t20,t21,t22,123,t24,t25;
{
t0 = power(h,2);
t1 = -(s[1]1*t0);
t2 = power(an[2],2);
t3 = -(4.0%bn[1]);
t4 = -qdd[1];
t5 = 0.25%((qdd[2]+t4)*t0+4.0*bn[2]+t3);
t6 = cos(t5);
t7 = power(h,3);
t8 = power(qdd[2],2);
t9 = power(h,4);
t10 = sin(t5);
t11 = power(an[3],2);
t12 = 4.0%bn[3];
t13 = 0.25%((qdd[3]+t4)*t0+t12+t3);
t14 = cos(t13);
t15 = power(qdd[3],2);
t16 = sin(t13);
t17 = s[1]#t0;
t18 = -(4.0%mcm[1] [2]*t6);
t19 = power(an[1],2);
t20 = power(qdd[1],2);
t21 = -(s[2]%t0);
t22 = 0.25%((qdd[3]-qdd[2])*t0+t12-(4.0%bn[2]));
t23 = cos(t22);
t24 = sin(t22);
t25 = s[2]*t0;
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jL1I[1] = -(0.25%(-(mecm[1] [31*qdd[3]#t0*t16)-(0.25%
mcm [1] [3]*t15%t9*t14) - (mem [1] [3] *an [3] *qdd [3] *t7*
t14)-(mcm 1] [3]*t11*t0*t14) - (mcm[1] [2] *qdd [2] *tOx*
t10)-(0.25%mem [1] [2] #t8*t9*t6) - (mem [1] [2] *an [2] *qdd
[2]*t7*t6) - (mcm[1] [2] ¥t 2+t 0*t6) +t1-(4.0*xmecm[1] [1]))
);

j[11[2] = -(0.25%(3.0*mcm[1] [2]*qdd [2] *tO*t10+4.0%

mcm [1] [2]*an [2] *h*t10+0.25%mem [1] [2] #t8%t9*t6+mem[1

J[2]*an[2]*qdd [2]*t7*t6+mcm[1] [2] ¥t2*t0*t6+t18+t17)

);

jO1103] = -(0.25%(3.0*mcm[1] [3]*qdd [3] *tO*t16+4.0%
mcm[1] [3]*an [3] *h*t16+0.25*mcm[1] [3] #t156%t9*t14+mem
[1] [3]*an[3]*qdd [3] *t7*t14+mcm [1] [3]*t11%tO*t14-(
4.0xmcm[1][3]*t14)));

j[21[1] = -(0.25*%(-(3.0%qdd[1] *mcm[1] [2]*t0O*t10) - (

4 .0*an[1]*mem[1] [2]¥h*t10)+0.25%t20*mem[1] [2] *t9*t6
+an[1]*qdd[1] *mcm[1] [2] *t7#t6+t19*mem [1] [2] *t0*t6+
t18+t17));

jl21[2] = -(0.25%(-(mcm[2] [3]*qdd[3]*tO*t24)-(0.25%
mcm [2] [3]*t 15%t9%t23) - (mem [2] [3]*an [3] *qdd [3] *t7*
t23) - (mem [2] [3]#t11%t0*t23) +qdd [1]*mem [1] [2] ¥t0*t10
-(0.25%t20*kmem[1] [2] *t9*t6) - (an[1] *qdd [1] *mem [1] [2]
*t74t6) - (t19*xmcm[1] [2] *t0*t6)+t21+t1~(4.0*mecm [2] [2]
M)

j[21[3] = -(0.25%(3.0*mcm[2] [3]*qdd [3] *tO*t24+4.0%
mem [2] [3] *an [3] *h*t24+0.25%mem [2] [3] #t 154t 9%t 23+mcm
[2] [3]*an[3] *qdd [3] *t7*t23+mcm [2] [3] *t11%t0*t23-(

4 .0*mcm [2] [3]*t23)+t25));

j[31[1] = 0.25%(3.0*qdd[1]*mem[1] [3] #tO*t16+4.0*an[1
I*mem[1] [3] *h*t16~-(0.254t204mem [1] [3] *t9*t14)~(an[1
J*qdd[1]*mem[1] [3]*t7*t14) - (t19*mem[1] [3]*tO*t14)+
4 .0*mcm[1] [3]*t14);

j[3]1[2] = 0.25%(3.0%qdd[2] #mem[2] [3] *tO*t24+4.0%an[2
Jsmcm [2] [3]*h*t24- (0.25*t8*mcm[2] [3] *t9*t23) - (an[2]
*qdd [2] *mem [2] [3]*t7*t23) - (t2+mem [2] [3]¥t0*t23) +4.0
«mcm [2] [3]*t23+t21);

j[31[3] = 0.25%(-(qdd[2]*mcm[2] [3]*t0*t24)+0.256*t8*
mcm [2] [3]*t9*t23+an [2] *qdd [2] *mcm [2] [3]*t7*t23+t2x
mcm [2] [3]*t0*t23~(qdd [1]*mem [1] [3]*t0*t16) +0.25%t20
*mem [1] [3]*t9*t14+an[1]*qdd [1]*mem[1] [3]*t7*t14+t19
*mcm[1] [3]%tO*t14+t25+4 . 0*mem[3] [3]) ;
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compute_g(mcm, h, an, bn, qdd, tau, s, g)
double mcm[] [NUM_BODIES+1], h, an[], bn[l, qdd[1, taull,
s[1, gll;
{
double o1;
double 02;
double 03;
double o04;
double 05;
double 06;
double o7;
double 08;
double 09;
double 010;
double o011;
double 012;
double 013;
double 014;
double 015;
double 016;
double 017;
double 018;
double 019;
double 020;
double 021;
double 022;
double 023;

ol = power(h,2);

02 = -(4.0%bn[1]);

03 = -qdd[1];

04 = 0.25%((qdd[2]+03)*01+4.0¥bn[2]+02);
o5 = cos(o4d);

06 = power(an{2],2);

o7 = sin(o4);

08 = power(qdd[2],2);

09 = 4.0%bn[3];

010 = 0.25%((qdd[3]+03)*01+09+02);
o011 = cos(010);

012 = power(an[3],2);

013 = sin(o010);

014 = power(qdd[3],2);

015 = -(4.0xbn[2]*s[2]);

016 = 4.0xs[2]*bn[3];
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017 = -(qdd[2]*s[2]*01);

018 = s[2]*qdd[3]*o1;

019 = power(an[1],2);

020 = power(qdd[1],2);

021 = 0.25%((qdd[3]-qdd[2])*01+09-(4.0%bn[2]));
022 = cos(021);

023 = sin(o021);

gl1] = -(0.25%(mem[1] [3] *014%01*013+4.0*mem[1] [3]*an [3]*qdd [
3]*h*013+4.0*mcm[1] [3] *012%013-(4.0*mecm [1] [3] *qdd [3] *011) +
mcm[1] [2] *08*01*o7+4.0*mem [1] [2]*an [2] *qdd [2] *h*07+4 . Oxmem [
11 [2] *06%07-(4.0%mem [1] [2] *qdd [2] *05) +s [1] *qdd [2] *01-(qdd [1
J*s[1]*01)+4.0*s[1]*bn[2]~-(4.0*qdd[1]*mcm[1] [1])+4.0*tau[1]
-(4.0%bn[11#s[11)));

gl2] = -(0.25%(mem[2] [3] *014*01%023+4 . 0%mcm[2] [3] *an [3] *qdd [
3] *h*023+4.0*mem [2] [3]¥012%023~- (4. 0*xmem [2] [3] *qdd [3] ¥022) - (
020%mem [1] [2] ¥01%07) - (4. 0%an [1]1+qdd [1]#mem [1] [2] *h*07)- (4.0
*019*mcm [1] [2] ¥07)-(4.0%qdd[1]*mcm[1] [2] *05)+018+017-(s[1]*
gdd[2]*01)+qdd[1]*s[1] *01+016-(4.0%*qdd [2] *mcm[2] [2] ) +4.0%
tau[2]+015-(4.0xs[1]*bn[2])+4.0%bn[1]*s[1]));

g[3] = 0.25%(08%mcm[2] [3]*01%023+4.0%an [2] *qdd [2] *mcm [2] [3] *
h*023+4.0%o06*mcm [2] [3] ¥023+4 .0%qdd [2] *mcm [2] [3] *022+020*mem
[1] [3]*01*013+4.0%an[1]*qdd[1]*mcm[1] [3]*¥h*013+4.0%019*mcm[
1] [3]*013+4.0%qdd[1]*mcm[1] [3]*011+018+017+4.0%qdd [3] *mcm [3
1[3]-(4.0xtaul3])+016+015);

}
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Appendix E

Implementation Issues

When implementing a distributed system that passes actual data back and forth
across the network (rather than messages), the type definitions for the structures
used are very important.

It is crucial that both sides of the communications interface agree on the def-
inition of the structure used. In our case, the structure depends on a defined
constant, NUM_BODIES the number of bodies in the simulation. If the definition
of this constant should change, certain modules of code on both machines must be
recompiled.

It is easy to set up compilation dependencies for code resident on a single
machine using make(1). However, it takes some doing to specify dependencies
involving files on different filesystems (i.e., not NFSed together, but on the same

TCP/IP network).
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Shown below is a Makefile fragment that solves this problem. Assuming
rcp(1C), and rsh(1C) exist on the machine, one can then specify compilation ac-

tions to take place on another machine under certain circumstances, as follows:

RemoteChainIPC.h: ChainIPC.h
rcp ChainIPC.h orbit:/space/byrne/chain
rsh orbit ’cd chain; make’
touch RemoteChainIPC.h

The file RemoteChainIPC.h is used to remember when the compilation on orbit
last took place. The first line indicates that files on orbit depend on ChainIPC.h.
If ChainIPC.h has changed since the files on orbit were last compiled, then
ChainIPC.h is copied over the network to the proper directory on orbit, and the
make(1) utility is invoked to build the code in that directory, using its Makefile. Fi-

nally, the time of this action is saved in the modification time of RemoteChainIPC.h.
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